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Abstract. Legendre gave simple necessary and sufficient conditions for the

solvablility of the diophantine equation aX2 + bY 2 + cZ2 = 0 where abc is

non-zero and square free: the equation has a non-trivial solution if and only
if (i) a, b, c do not all have the same sign, (iia) −bc is a square modulo |a|,
(iib) −ac is a square modulo |b|, and (iic) −ab is a square modulo |c|.

In this exposition of Legendre’s theorem, we give a proof based on La-
grange’s descent procedure for equations of the form Z2 = aX2 + bY 2. This

exposition is intended in part to serve as an introduction to the paper Coun-
terexamples to the Hasse Principle: an elementary introduction by W. Aitken

and F. Lemmermeyer.

1. Introduction

Let F (X, Y, Z) be a quadratic form with integer coefficients. (A quadratic form
is a homogeneous polynomial of degree 2). We are interested in determining if there
are Z-solutions to the equation F (X, Y, Z) = 0. Of course, (0, 0, 0) is trivially a
solution; we are interested only in non-trivial solutions (x0, y0, z0) 6= (0, 0, 0).

If one non-trivial solution exists then an infinite number exists, and the general
solution can be found using a well-known method for parameterizing the conic.
In what follows we will confine our attention to determining whether any non-
trivial solutions exist, and ignore the problem of finding the general solution. The
key result is Legendre’s theorem stated and proved below. The proof employs La-
grange’s technique of descent, which not only determines existence or non-existence
of solutions, but gives a practical method for finding a solution if it exists. (Lagen-
dre’s original proof was different1, but the technique of using Lagrange’s descent to
prove Legendre’s theorem a traditional one. See, for example, Chapter VII, Section
3 of [1], and Chapter II, §XIV and Chapter IV, Appendix I of [3].)

Since we are considering homogeneous equations, Z-solvability and Q-solvability
are seen to be equivalent conditions (one can clear denominators). We will some-
times focus on rational solutions, and sometimes focus on integer solutions. If
there is a common factors in an integer solution we can remove it. A primitive
triple (x0, y0, z0) is a triple of integers, not all zero, whose greatest common divisor
(GCD) is 1. So if there is a non-trivial Z-solution or Q-solution then there is a
primitive Z-solution:

Lemma 1. The following conditions are equivalent:
(i) F (X, Y, Z) = 0 has a non-trivial Q-solution.
(ii) F (X, Y, Z) = 0 has a non-trivial Z-solution.
(iii) F (X, Y, Z) = 0 has a primitive Z-solution.

1That is, if I understand Weil’s remarks after the statement of this theorem in Chapter IV,
§VI of [3].
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2. Preliminary reduction using linear algebra

Let k = Q, or more generally a field k of characteristic not equal to 2 (i.e.,
we require that 1 + 1 6= 0 in k). Every quadratic form in k[X1, . . . , Xn] can be

written as
−→
XA

−→
X

t
where A is a symmetric matrix with entries in k and where−→

X = [X1, X2, . . . , Xn] is the row vector with variable entries. Basic linear algebra
gives a method for finding a non-singular n by n matrix M with entries in k such
that M tAM is diagonal (see Theorem 1′, Chapter IV, of [2]). In the case where
k = Q, we can choose this M so that M tAM has entries in Z.

Let A be a matrix representing the quadratic form F (X, Y, Z) and let M tAM be
a diagonal matrix with diagonal coefficients a, b, c ∈ Z. Then the matrix M gives
a bijection between (i) the set of non-trivial Q-solutions of aX2 + bY 2 + cZ2 = 0
and (ii) the set of non-trivial F -solutions of F (X, Y, Z) = 0. By Lemma 1, the
diophantine equation F (X, Y, Z) = 0 has a non-trivial Z-solution if and only if
aX2 + bY 2 + cZ2 = 0 has a non-trivial Z-solution.

If a, b, or c is zero, then we easily find non-trivial Z-solutions. So from now on
assume

F (X, Y, Z) = aX2 + bY 2 + cZ2

where a, b, c ∈ Z are each non-zero.

3. normal forms

There are two normal forms of special interest. The first is the case were c = −1
and where a and b are square free. In this case,

Z2 = aX2 + bY 2

is said to be in Lagrange normal form.
The second normal form results from the case where the product abc is square-

free. In this case, aX2 + bY 2 + cZ2 = 0 is said to be in square-free normal form.2

We now show that we can always reduce our equations to these normal forms.

Lemma 2. Suppose c ∈ Z is non-zero. The map (x0, y0, z0) 7→ (x0, y0, cz0) is a
bijection from (i) the set of Q-solutions of aX2 + bY 2 + cZ2 = 0 to (ii) the set of
Q-solutions of acX2 + bcY 2 + Z2 = 0.

Using Lemma 1, we get the following corollary of the above lemma:

Corollary 1. The equation aX2 + bY 2 + cZ2 = 0 has a non-trivial Z-solution if
and only if acX2 + bcY 2 + Z2 = 0 does.

Lemma 3. Suppose d2 | a. Then the map (x0, y0, z0) 7→ (dx0, y0, z0) is a bijection
from the set of Q-solutions of aX2 + bY 2 + cZ2 = 0 to the set of Q-solutions of
(a/d2)X2 + bY 2 + cZ2 = 0.

Corollary 2. Suppose d2 | a. Then the equation aX2 + bY 2 + cZ2 = 0 has a
non-trivial Z-solution if and only if (a/d2)X2 + bY 2 + cZ2 = 0 does.

A consequence of the above two corollaries is that we can always transform our
equation to Lagrange normal form. To get an equation into square-free normal
form, we need the following:

2I was tempted to call it Legendre normal form, but I found that confusing.
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Lemma 4. Suppose d | a and d | b. Then the map (x0, y0, z0) 7→ (dx0, dy0, z0) is a
bijection from the set of projective solutions of aX2 + bY 2 + cZ2 = 0 to the set of
projective solutions of (a/d)X2 + (b/d)Y 2 + cdZ2 = 0.

Corollary 3. Suppose d | a and d | b. Then the equation aX2 + bY 2 + cZ2 = 0 has
a non-trivial Z-solution if and only if (a/d)X2 + (b/d)Y 2 + cdZ2 = 0 does.

To convert aX2 + bY 2 + cZ2 = 0 to square-free normal form, first divide by the
GCD of a, b, c giving a new equation where the GCD of a, b, c is one. Next, using
Corollary 2, we can transform the equation to the case where that a, b, c are square-
free. Now suppose two of the coefficients, a and b say, are divisible by a prime p.
By Corollary 3, we can reduce the problem of solving aX2 + bY 2 + cZ2 = 0 to that
of solving a′X2 + b′Y 2 + c′pZ2 = 0 where a′ = a/p, b′ = b/p and c′ = pc. Since
a, b were square free, a′ and b′ are not divisible by p and are also square free. Also
c′ is square free since p does not divide c. By continuing this process for each p
whose square divides abc, we reduce to the case where aX2 + bY 2 + cZ2 = 0 is in
square-free normal form.

4. necessary conditions

First consider the case where the equation is in Lagrange normal form.

Proposition 1. If Z2 = aX2 + bY 2 has a non-trivial Z-solution, then
(i) at least one of a and b is positive,
(ii) a is a square modulo |b|,
(iii) b is a square modulo |a|, and
(iv) −(a/d)(b/d) is a square modulo d where d is the GCD of a and b.

Proof. The condition (i) is clear from the fact that all Z-solutions are R-solutions.
By Lemma 1 we can assume that z2

0 = ax2
0 + by2

0 where (x0, y0, z0) is primitive.
Any common prime divisor p of x0 and b also divides z0. But then p2 divides by2

0 .
Since b is square free, p divides y0, a contradiction. Thus x0 is prime to b and
a ≡

(
z0x

−1
0

)2
mod b. This gives (ii). Of course, (iii) follows as well.

Now observe that d2 divides z2
0 , so d divides z0. Thus

d
(z0

d

)2

=
(a

d

)
x2

0 +
(

b

d

)
y2
0 ,

so

−
(

a

d

) (
b

d

)
≡

(
b

d
y0x

−1
0

)2

mod d,

since, as we saw, x0 is prime to b and consequently to d. �

Now we consider equations in square-free normal form.

Proposition 2. Suppose aX2 + bY 2 + cZ2 = 0 has a non-trivial Z-solution where
abc is square-free. then (i) a, b, c are not all of the same sign, (iia) −bc is a square
modulo |a|, (iib) −ac is a square modulo |b|, and (iic) −ab is a square modulo |c|.

Proof. The first condition is clear from the fact that all Z-solutions are R-solutions.
For the second condition it suffices to prove (iia).

By Lemma 1 we can assume that ax2
0+by2

0+cz2
0 = 0 where (x0, y0, z0) is primitive.

Observe that −by2
0 ≡ cz2

0 mod |a|. Next observe that a and y0 are relatively prime:
otherwise, if p is a prime dividing both, then p must divide cz2

0 . But a and c are
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relatively prime, so p must divide z0. But then p2 must divide ax2
0. Since a is

square free, p must divide x0 contradicting the GCD 1 condition on (x0, y0, z0).
Thus y0 has an inverse modulo |a| and −bc ≡

(
cz0y

−1
0

)2
mod |a|. �

5. Lagrange’s Descent and the main Theorem

Rational numbers of the form a2 +nb2 and a2−nb2 can be regarded as products
of numbers in quadratic extensions of Q. For example,

u2 + 5v2 =
(
u +

√
−5v

) (
u−

√
−5v

)
.

Such factorizations motivate a variety of classical algebraic identities involving sums
or differences of squares. An example is the following:

Lemma 5. Suppose a, b, b′, e ∈ Z are such that a + bb′e2 is a square and bb′e2 6= 0.
Then Z2 = aX2 + bY 2 has a non-trivial Q-solution if and only if Z2 = aX2 + b′Y 2

does.

Proof. By symmetry, it suffices to prove one direction of the biconditional. Suppose
(x0, y0, z0) is a non-trivial Q-solution to Z2 = aX2 + bY 2. So

by2
0 = z2

0 − ax2
0 =

(
z0 + x0

√
a

)(
z0 − x0

√
a

)
(for a fixed choice of square root

√
a ∈ C).

Now write a + bb′e2 = u2. So

bb′e2 = u2 − a =
(
u +

√
a
)(

u−
√

a
)
.

Combining we get

b′(bey0)2 = (bb′e2)(by2
0)

=
(
u +

√
a
)(

u−
√

a
)(

z0 + x0

√
a
)(

z0 − x0

√
a
)

=
(
u +

√
a
)(

z0 + x0

√
a
)(

u−
√

a
)(

z0 − x0

√
a
)

=
(
(uz0 + ax0) + (ux0 + z0)

√
a
)(

(uz0 + ax0)− (ux0 + z0)
√

a
)

= (uz0 + ax0)2 − a(ux0 + z0)2.

So (ux0 + z0, bey0, uz0 + ax0) is a Q-solution to Z2 = aX2 + b′Y 2. Sinceu 0 1
0 be 0
a 0 u


has determinant be(u2−a) = be(bb′e2) 6= 0, the above solution to Z2 = aX2 + b′Y 2

is non-trivial. �

The necessary conditions of Proposition 1 turn out to be sufficient conditions to
execute a descent:

Definition 1. We will say that (a, b) satisfies the descent condition when (i) a, b
are square-free non-zero integers not both negative, (ii) a is a square modulo |b|,
(iii) b is a square modulo |a|, and (iv) −(a/d)(b/d) is a square modulo d where d is
the GCD of a and b.

Lemma 6. Suppose that a, b, b′, e are non-zero integers such that a + bb′e2 is a
square, but where a, b, b′ are square-free. If the pair (a, b) satisfies the descent
conditions, then so does (a, b′).



LEGENDRE’S THEOREM 5

Proof. Write a + bb′e2 = u2. If a and b′ are both negative, then b must be positive
since (a, b) satisfies the descent condition. This implies u2 is negative, a contra-
diction. Thus (a, b′) satisfy the first condition. The second condition, that a is a
square modulo |b′|, is clear from the equation a + bb′e2 = u2.

To continue, we need to consider four classes of primes (really three). In what
follows, let d be the GCD of a and b and let d′ be the GCD of a and b′.

Type 1: p a prime dividing a but not bb′e2. Then b′ ≡ b−1
(
e−1u

)2 mod p, and
so b′ is a square modulo p since b is a square modulo p.

Type 2: p a prime dividing a and b. In other words, p | d. Thus p | u, since
u2 = a + bb′e2. However, p - b′ and p - e since a is square free and a = u2 − bb′e2.
By assumption, −(a/d)(b/d) is a square modulo d and a and b are square free, so
−(a/p)(b/p) must be a non-zero square modulo p. Divide both sides of the equation
u2 = a + bb′e2 by p, then multiply by a/p:

a

(
u

p

)2

=
a

p

u2

p
=

a

p
· a + bb′e2

p
=

(
a

p

)2

−
(
−a

p

b

p

)
b′e2.

The left hand side of this equation is divisible by p. Solving for b′ modulo p shows
that b′ is a square modulo p.

Type 3: p a prime dividing a and b′. In other words, p | d′. So b′ is trivially a
square modulo p. Now p | u since u2 = a + bb′e2. However, p - b and p - e since a is
square free and a = u2 − bb′e2. Now

a

p
+

(
b′

p

)
be2 = p

(
u

p

)2

so −
(

a

p

b′

p

)
be2 ≡

(
a

p

)2

mod p.

Since b and e2 are non-zero square modulo p, it follows that −(a/p)(b′/p) is a square
modulo p. From this it follows that −(a/d′)(b/d′) is a square modulo p.

Type 4: p a prime dividing a and e. Now p | u since u2 = a + bb′e2. So p2 | a
since a = u2 − bb′e2. But this contradicts the assumption that a is square free, so
no such p exists.

By the Chinese Remainder Theorem, if p1, . . . , pk are distinct primes, and if an
integer N is a square modulo pi for each i, then N is a square modulo the product
p1 · · · pk. Since a is square free, and since b′ is a square for all three types of primes
dividing a, it follows that b′ is a square modulo |a|, and the third requirement holds
for (a, b′). By considering only primes of the third type, we get −(a/d′)(b/d′) is a
square modulo d′. So the fourth and final requirement holds for (a, b′). �

Theorem 1. Suppose that a, b ∈ Z are integers such that (a, b) satisfies the descent
condition. Then Z2 = aX2 + bY 2 has a non-trivial Z-solution.

Proof. Observe that if a = 1 then (1, 1, 0) is a non-trivial solution, and if b = 1
then (1, 0, 1) is a non-trivial solution. Our goal is to use descent until we get to an
equation with a = 1 or b = 1.

For convenience, suppose that |a| ≤ |b|. If |a| = |b| = 1 we are done since either
a or b must be positive. So assume that |b| ≥ 2.

Since (a, b) satisfies the descent condition, a is a square modulo |b|. Let u be an
integer of smallest absolute value so that a ≡ u2 mod |b|. In other words, |u| ≤ |b|/2,
and b divides u2 − a. Write u2 − a = bb′e2 where b′ is square free.

If bb′e2 = 0, then a is a square. Since a is square free, a = 1 and we are done.
So from now on assume that b′ and e are non-zero.
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Claim: |b′| < |b|. To see this observe that

|b||b′||e2| = |u2 − a| ≤ |u|2 + |a| ≤ |b|2/4 + |b|, so |b′| ≤ |b|/4 + 1.

This gives
|b′| ≤ |b|/4 + 1 < |b|/4 + 3|b|/4 = |b|.

(1 < 3|b|/4 since we are in the case where |b| ≥ 2.) By Lemma 5 we have reduced
the equation to one with smaller coefficients (their product is smaller in absolute
value).

The new equation has coefficients a and b′. These coefficients satisfy the descent
condition by the previous lemma. If either is 1 we are done. Otherwise repeat
the descent, reducing the problem to an equation with yet smaller coefficients. In
this way we continue until one of the coefficients is 1 and we are guaranteed a
solution. �

Corollary 4 (Legendre’s Theorem). Suppose a, b, c ∈ Z are such that abc is a
non-zero square-free integer. Then the equation aX2 + bY 2 + cZ2 = 0 has a non-
trivial Z-solution if and only if (i) a, b, c do not all have the same sign, (iia) −bc
is a square modulo |a|, (iib) −ac is a square modulo |b|, and (iic) −ab is a square
modulo |c|.

Proof. One direction has been done (Proposition 2). By Corollary 1, for the other
direction it is enough to show that Z2 = −acX2−bcY 2 has a non-trivial Z-solution,
and by the previous theorem, it is enough to show that a′ = −ac and b′ = −bc
satisfy the descent conditions.

Since abc is a non-zero square-free integer, the same is true of a′ = −ac and
b′ = −bc. Since a, b, c are not all of the same sign, either a′ or b′ is positive. So
the first descent condition is satisfied.

By assumption, a′ = −ac is a square modulo |b|. Trivially, −ac is a square
modulo |c|. Since b and c are relatively prime (abc is square free), we have that a′

is a square modulo |b′| = |bc|. So the second descent condition is satisfied. The
third is satisfied for similar reasons.

Since abc is square-free, the GCD of a′ = −ac and b′ = −bc is just |c|. And
−(a′/|c|)(b′/|c|) = −ab is a square modulo |c| by assumption. So the fourth and
final descent condition is satisfied. �

6. Hasse Principle

In this section we consider the congruences

aX2 + bY 2 + cZ2 ≡ 0 mod pk

and their relation to the Diophantine equation aX2 + bY 2 + cZ2 = 0. As before,
we assume a, b, c ∈ Z are such that abc is non-zero and square-free.

A triple (x0, y0, z0) is said to be p-primitive if at least one of x0, y0, z0 is not
divisible by p. Now above we saw that primitive Z-solutions had the stronger
property that x0, y0, z0 were pairwise relatively prime. With this in mind we say
that a solution (x0, y0, z0) to the congruence is p-strong if at most one of x0, y0, z0

is divisible by p.

Exercise 1. Show that if k ≥ 2 then any p-primitive solution to

aX2 + bY 2 + cZ2 ≡ 0 mod pk

is automatically a p-strong solution. (Of course this fails if k = 1 and p | abc.)
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Exercise 2. Suppose that p | a and that the congruence aX2+bY 2+cZ2 ≡ 0 mod p
has a p-strong solution. Show that −bc is a square modulo p.

Conclude that if aX2 + bY 2 + cZ2 ≡ 0 mod p2 has a p-primitive solution then
−bc is a square modulo p.

Exercise 3. Suppose that, for all p | a, the congruence aX2+bY 2+cZ2 ≡ 0 mod p
has a p-strong solution. Show that −bc is a square modulo |a|.

Conclude that if aX2 + bY 2 + cZ2 ≡ 0 mod p2 has a p-primitive solution for all
p | a then −bc is a square modulo |a|.

Exercise 4. Show that in the previous exercise it suffices to have solutions for all
odd p | a.

From the above exercises together with Legendre’s theorem we get the following

Theorem 2. Suppose aX2 + bY 2 + cZ2 ≡ 0 mod p has a p-strong solution for all
odd p | abc. Suppose also that aX2 + bY 2 + cZ2 = 0 has a non-trivial R-solution.
Then aX2 + bY 2 + cZ2 = 0 has a non-trivial Z-solution.

Theorem 3. Suppose aX2 + bY 2 + cZ2 ≡ 0 mod p2 has a p-primitive solution for
all odd p | abc. Suppose also that aX2 +bY 2 +cZ2 = 0 has a non-trivial R-solution.
Then aX2 + bY 2 + cZ2 = 0 has a non-trivial Z-solution.

Corollary 5 (Hasse Principle: form 1). The equation aX2 + bY 2 + cZ2 = 0 has a
non-trivial Z-solution if and only if (i) it has a non-trivial R-solution, and (ii) it
has a primitive solution modulo pk for all primes p and integers k ≥ 1.

This can be restated using the p-adic integers:

Corollary 6 (Hasse Principle: form 2). The equation aX2 + bY 2 + cZ2 = 0 has a
non-trivial Z-solution if and only if (i) it has a non-trivial R-solution, and (ii) it
has a non-trivial Zp-solution for all primes p.

The advantage of this statement is that it is obvious that all these conditions
are preserved under matrix transformations (as discussed in the second section), so
one gets

Corollary 7 (Hasse Principle: form 3). Consider a quadratic homogeneous Dio-
phantine equation F (X, Y, Z) = 0 where F (X, Y, Z) ∈ Z[X, Y, Z] has degree 2.
Then this equation has a non-trivial Z-solution if and only if (i) it has a non-trivial
R-solution, and (ii) it has a non-trivial Zp-solution for all primes p.
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