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1. Introduction

Mathematics most famous marginal note is Fermat’s assertion of what is now
called Fermat’s Last Theorem. This was made in his edition of Arithmetica by
Diophantus, which had recently been translated from Greek to Latin, the common
language of science and all forms of learning. Fermat’s note was also in Latin, and
translates roughly as follows: “It is impossible for a cube and a cube to give a cube,
or a fourth power and a fourth power to give a fourth power, or, more generally,
for any power of degree greater than two to be the sum of two powers of the given
degree. I have a truly marvelous proof for this, but this margin is too small to
contain it.” In other words, xn + yn = zn has no solution if n > 2 and if x, y, z are
required to be positive integers.

What is less known is that Fermat was able to fit a proof of a related result in
the margin in a later section of this same book. The result in this other marginal
note can be used to give a quick proof of the n = 4 case of Fermat’s Last Theorem.
It is not known whether he proved the n = 4 case in this way, or saw the connection
between the two marginal notes. However, it is believed that Fermat did have some
sort of proof of the n = 4 case of “Fermat’s Last Theorem” since it can be proved
with techniques well-known to Fermat, and since he claimed to be able to prove
the n = 3 and n = 4 cases in several letters. In contrast, Fermat never publically
claimed a proof of the general case (n > 4). The claim was confined to the above
mentioned marginal note written apparently only for himself.

The result that Fermat stated in this later marginal note is related to Pythagorean
triples, right triangles with all three sides of integral length:1

Main Theorem 1. It is impossible for a right triangle with sides all of integral
length to have square area.

As part of his proof of the above theorem, Fermat also proved the following
interesting theorem:

Main Theorem 2. It is impossible for two positive square integers to have a sum
and a difference that are both positive square integers.

The proof he gives is sketchy. Fermat himself realized this and ended this long
marginal note with the statement “The margin is too small to allow me to give a
complete proof with all the details.”

His proof is based on a technique he developed which he called the method of
descent. Basically one shows that a solution to a problem, if it exists, can be
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used to produce a strictly smaller solution (where size is measured by some natural
number). The existence of any solution then leads to a contradiction since there
are no strictly decreasing infinite sequences of postive integers. In what follows we
will measure the size of a Pythagorean triple by taking the maximum of the triple,
in other words, the lenghth of the corresponding hypotenuse.

The purpose of this note is to give proofs to the above two theorems. I roughly
follow Fermat’s sketch but I take a few liberties. In any case the argument uses
only tools and ideas available to Fermat, although dressed up in modern notation.
A similar reconstructed proof can be found in Harold M. Edwards very useful
book Fermat’s Last Theorem published by Springer-Verlag. In fact, I was inspired
to develop my version after seeing Edwards’s version. Edwards himself follows
Dickson’s reconstruction of the gaps in Fermat’s proof. I differ from Edwards, and
Fermat himself, in certain aspects of the organization, and in how I prove the n = 4
case of Fermat’s Last Theorem from these results.

2. Pythagorean Triples

Let a, b, c be positive integers such that a2 +b2 = c2. Of course, these correspond
to right triangle with integer sides a, b, c. Such triples are called Pythagorean triples.
This terminology is traditional and common, although it is well-known since the
1930’s that such triples appeared much earlier than the time of Pythagoras on
cuneiform tablets in Mesopotamia.

Observation. If the integer d > 1 divides each of a, b, c, then (a/d), (b/d), (c/d) is
also a Pythagorean triple.

If no such d > 1 exists, we call (a, b, c) a primitive Pythagorean triple.

Observation. The Pythagorean triple (a, b, c) is primitive if and only if (a, b, c)
are pairwise relatively prime. If any two of the three are relatively prime, then the
triple is primitive.

For the remainder of this section, we assume that (a, b, c) is a primitive Pythagorean
triple. Also we assume a is odd: a and b cannot both be even by the proceeding
observation, so we switch a, b if necessary so that a is odd.

By looking at solutions to x2 + y2 ≡ z2 modulo 4 we get the following:

Observation. Both a and c are odd, and b is even.

We rewrite the equation a2 + b2 = c2 as follows:

c + a

2
c− a

2
=

(
b

2

)2

.

Note that any common divisor of (c + a)/2 and (c−a)/2 would divide their sum
c and difference a, but a and c are relatively prime. Thus

Observation. The integers (c + a)/2 and (c − a)/2 are relatively prime, so both
are squares since their product is a square.

Let p and q be such that p2 = (c + a)/2 and q2 = (c − a)/2. This immediately
gives the following.

Observation. There are relatively prime integers p > q > 0 such that

a = p2 − q2, b = 2pq, c = p2 + q2.
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Since a and c are odd, p and q cannot both be odd:

Observation. The integers p and q defined above have different parities. In other
words, they differ modulo 2.

Conversely, given p > q > 0 of different parities and relatively prime, the above
formulas are easily seen to give primitive Pythagorean triples. This method of
generating all Pythagorean triples was well-known even by the time of Diophantus,
and by Fermat and his contemporaries.

3. Reduction Lemmas

The best strategy for proving the two main theorems is to, in some sense, prove
them at the same time. More specifically, we will set up a descent that snakes
between the two problems. Recall that we will use c as the measure of the size of
a pythagorean triple (a, b, c).

Lemma 1. Suppose x, y, z, w are postive integers such that x2 + y2 = z2 and
x2 − y2 = w2. Also suppose x and y are relatively prime (we can always reduce to
this case). Then (1) x, z and w are odd, and y is even, (2) u = (z + w)/2 and
v = (z − w)/2 satisfy the equations

u2 + v2 = x2 1
2
uv =

(y

2

)2

,

and (3) u and v are relatively prime. In particular, (u, v, x) is a smaller primitive
Pythagorean triple than (x, y, z), and yields a right triangle with square area.

Proof. Part 1, concerning the parity of x, y, z, w, is obtained by looking at the given
equations modulo 4. Part 2 is a simple calculation. Part 3 is established by noting
that any common divisor of u, v is a common divisor of z = u + v and w = u− v,
and any common divisor of z and w is a divisor of 2x2 = z2 +w2 and 2y2 = z2−w2.
Since z and w are odd, and x2 and y2 are relatively prime (since x and y are), the
result follows. �

Lemma 2. Suppose (a, b, c) is a primitive Pythagorean triple such that the area of
the corresponding right triangle is a square:

1
2
ab = d2

for some integer d. Then there is a primitive pythagorean triple (m, n, s) of smaller
size such that m2−n2 is also a square. In particular, the sum and difference of m2

and n2 are squares.

Proof. As discussed about, the triple (a, b, c) can be expressed in terms of relatively
prime integers p, q such that p > q > 0 and such that p and q have opposite parities.
So

(a, b, c) = (p2 − q2, 2pq, p2 + q2).
Thus

d2 =
1
2
ab = pq(p2 − q2) = pq(p + q)(p− q).

Note that the four integers p, q, p + q, p − q are pairwise relatively prime (for
example, any common divisor of p + q and p − q divides the sum 2p and the
difference 2q, but p + q is odd so any such divisor divides p and q). Since their
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product is a square, each of p, q, p + q, p − q is a square. Write p = m2, q = n2,
and p + q = s2. The result follows easily from this and the observation that

s < s2 = p + q < p2 + q2 = c.

�

4. Main Results

We are now in a position to prove either of the main theorems. Which one to
prove first is a mater of taste. Fermat’s marginal note describes the descent that
proves Main Theorem 2, and we will follow his lead.

Suppose x0, y0 are two positive integers such that x2
0+y2

0 and x2
0−y2

0 are squares.
After dividing by the greatest common divisor, we can assume that x0, y0 are rela-
tively prime. Thus x0 and y0 are a part of a primitive Pythagorean triple (x0, y0, z0).
Lemma 1 produces a smaller Pythagorean triple, and if we apply Lemma 2 to that
triple we get a yet smaller primitive Pythagorean triple (x1, y1, z1) such that x2

1+y2
1

and x2
1 − y2

1 are squares. Continuing in this way we produce an infinite sequence
of primitive Pythagorean triples (xi, yi, zi). So z0 > z1 > z2 > · · · , which is clearly
impossible.

This contradiction establishes Main Theorem 2. There is no need to prove Main
Theorem 1 by descent. We merely note that Lemma 2 combined with Main Theo-
rem 2 yields Main Theorem 1.

Finally, we show how Main Theorem 2 also yields a short proof of the n = 4 case
of Fermat’s Last Theorem.

Corollary 3. There are no positive integers x, y, z such that x4 + y4 = z4.

Proof. Suppose that such a triple (x, y, z) exists. By dividing all three integers by
the greatest common divisor of x and y, we reduce to the case where x and y are
relatively prime. This implies that (x2, y2, z2) is a primitive Pythagorean triple,
and so there are relatively prime positive integers p and q such that

(x2, y2, z2) = (p2 − q2, 2pq, p2 + q2).

Thus the sum and difference of p2 and q2 are both squares, contradicting Main
Theorem 2. �

5. Related Results

Edwards points out that if a, b, c are positive solutions to a4 + b4 = c4 then
(x, y, z) = (c, b, a2) is a solution to x4 − y4 = z2. He also points out that the
equation x4 − y4 = z2 can be shown to have no positive integer solution using the
main theorems discussed above. This gives another path to establishing Fermat’s
Last Theorem for n = 4.2

Theorem 4. There are no positive integers x, y, z such that x4 − y4 = z2.

2I do not think it is an easier path, nor that it is more likely the path Fermat actually followed.

But since the theorem concerning x4 − y4 = z2 is stronger than the n = 4 case of Fermat’s Last
Theorem, since it is of independent interest, and since it follows easily from the main theorems,

it is worth supplying the proof.
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Proof. Suppose otherwise that (x, y, z) is a solution. Suppose first that x and y are
divisible by a prime p. Then z is divisible by p2. In this case we replace (x, y, z)
with (x/p, y/p, z/p2) to get a smaller solution. In this way we eventually arrive at
a solution with x and y relatively prime.

We first consider the case where x and y have opposite polarities. Consider the
equation

(x2 + y2)(x2 − y2) = z2.

The two terms x2 +y2 and x2−y2 are relatively prime: any common divisor divides
the sum 2x2 and the difference 2y2. Since x2+y2 is odd, any common divisor is odd,
so actually divides x2 and y2 which are relatively prime. Since they are relatively
prime, we conclude that x2 + y2 and x2 − y2 are both squares, contracting Main
Theorem 2.

The remaining case is where x and y are odd, so z is even. Then we have

x2 + y2

2
x2 − y2

2
=

(z

2

)2

.

We observe that u = (x2 + y2)/2 and v = (x2 − y2)/2 are relatively prime since
their sum is x2 and their difference is y2. Thus u and v are squares. However,
u + v = x2 and u− v = y2 again contradicting Main Theorem 2. �

Most arguments given nowadays for the proof of Fermat’s Last Theorem for the
case n = 4 follows the following strategy. Observe that if a4 + b4 = c4 then (a, b, c2)
is a solution to x4 +y4 = z2. So the proof reduces to proving the following theorem.
This gives a third path to the result. The proof given here of the following theorem
is the usual proof, and is independent of the Main Theorems above. It is given so
that the reader can compare the complexity of the various approaches. Edwards
suggests that proving Fermat’s Last Theorem for the case n = 4 using the following
theorem is the most direct method, I personal favor the approach of proving Main
Theorem 2 by descent, and then proving Fermat’s Last Theorem as a corollary.

Theorem 5. There are no positive integers x, y, z such that x4 + y4 = z2.

Proof. Suppose (x, y, z) is a solution. Suppose first that x and y are divisible
by a prime r. Then z is divisible by r2. In this case we replace (x, y, z) with
(x/r, y/r, z/r2) to get a smaller solution. In this way we eventually arrive at a
solution (x0, y0, z0) with x0 and y0 relatively prime. By symmetry we can assume
x0 is odd.

Since (x2
0, y

2
0 , z0) is a primitive Pythagorean triple, we can find positive p > q

that are relatively prime such that x2
0 = p2 − q2, y2

0 = 2pq and z0 = p2 + q2, and
such that p and q have opposite parities.

In particular, (x0, q, p) is a Pythagorean triple. Since p and q are relatively prime,
it is primitive Pythagorean triple. This implies that p is odd. Since p and q have
opposite parities, we conclude that q is even. So we can find positive P > Q that
are relatively prime such that x0 = P 2 −Q2, p = 2PQ and q = P 2 + Q2. Hence(y0

2

)2

=
1
4
y2
0 =

1
4

(2pq) = PQ(P 2 + Q2).

Since P and Q are relatively prime, P,Q, P 2+Q2 must be pairwise relatively prime.
Since their product is a square, it follows that P,Q, P 2+Q2 are individually squares.
So we can find x1, y1, z1 so that P = x2

1, Q = y2
1 and P 2 + Q2 = z2

1 . In particular,
(x1, y1, z1) is another solution to x4

1 + y4
1 = z2

1 . Since P and Q are relatively
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prime, x1, y1 are relatively prime. So from the solution (x0, y0, z0) with relatively
prime x0, y0 we can generate a solution (x1, y1, z1) with relatively prime x1, y1. The
resulting solution is in smaller in the sense that

z2
1 = P 2 + Q2 = p + q < p2 + q2 = z0 < z2

0 .

Repeating gives a descending sequence of positive integers z0 > z1 > z2 > · · · , an
impossibility. �


