
UNIQUE FACTORIZATION

LECTURE NOTES: MATH 432, CSUSM, SPRING 2009. PROF. WAYNE AITKEN

In this lecture we consider the theorem that every integer n > 1 has an essentially unique
prime factorization. This is called the unique factorization theorem or the fundamental
theorem of arithmetic. It was surely known since ancient times, but it was Gauss who first
recognized the need for a rigorous proof a few hundred years ago. We will only prove unique
factorization for the ring Z, but it holds for certain other rings as well, including polynomial
rings. It should be noted, however, that there are other rings used in algebraic number
theory where unique factorization fails.1

We will use the following three facts from previous lectures and courses:

Proposition 1. Every integer n > 1 has a prime divisor.

Proposition 2. Suppose p is a prime, and that p divides a finite product:

p |
k∏

i=1

ai.

Then there is a factor ai of this product such that p | ai.

Proposition 3. If each of a1, . . . , ak are relatively prime to c, then the product a1 · · · ak is
relatively prime to c. In particular, units modulo c are closed under multiplication.

The following will also be needed:

Lemma 4. Suppose u and v are relatively prime to the prime p. If upk = vpl, then k = l.

Proof. Suppose otherwise. For instance, suppose l > k. Then u = vpl−k. The left hand sides
is prime to p, but the right hand side is a multiple of p. This is a contradiction. �

Proposition 5. Suppose p and q are primes and p | q. Then p = q.

Proof. Since q is a prime, the only positive divisors of q are 1 and q. Now p > 1 since p is a
prime. Thus p = q. �

1. Main Results

We begin with the existence result.

Lemma 6. Every integer n > 1 is the product of primes. In other words, there are primes
p1, . . . , pk, where k ≥ 1, such that

n = p1 . . . pk.

Furthermore, we can choose p1, . . . , pk so that pi ≤ pj whenever i ≤ j.
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1For that reason, Dedekind developed the theory of ideals (or ideal numbers), and showed that unique

factorization holds at the level of ideals for a large class of rings.
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Proof. (Strong Induction) If n is prime, then just choose p1 = n and k = 1. In particular,
the result is true of n = 2.

Now assume the result holds for all i with 1 < i < n. We must prove the result holds
for n as well. As mentioned above, if n is prime, the result holds. Thus assume that n is
composite. Let p be the largest prime divisor of n. By Proposition 1, and the fact that the set
of divisors of n is finite, such a largest prime exists. So n = mp for some integer 1 < m < n.
By the induction hypothesis, m is the product of primes: m = p1 . . . pk. Hence

n = mp = p1 . . . pkp.

By the induction hypothesis we can assume the pi are ordered by size, and since each pi

divides n, we have pi ≤ p.
By the principle of strong induction, the result holds for all n > 1. �

Now we consider uniqueness.

Lemma 7. Suppose n > 1 has two factorizations

n = p1 . . . pr = q1 . . . qs

where each pi and each qi is a prime, and such that the primes appear in ascending order in
the following sense: 1 ≤ i ≤ j ≤ r implies pi ≤ pj and 1 ≤ i ≤ j ≤ s implies qi ≤ qj. Then
r = s and pi = qi for each 1 ≤ i ≤ r.

Proof. (Strong Induction) If n is prime, then r = 1 and s = 1, so r = s. We then have
p1 = n = qi, so the result follows. (This covers the base case where n = 2).

Now assume the result holds for factorizations of i with 1 < i < n. We must prove the
result holds for n as well. Assume we are given two factorizations of n as in the hypothesis
of the lemma. As mentioned above, if n is prime, the result holds. Thus assume that n
is composite. In particular r > 1 and s > 1. Let p be the largest prime divisor of n. By
Proposition 1, and the fact that the set of divisors of n is finite, such a largest prime exists.
By Proposition 2, we have p | pi for some i. We have p = pi by Proposition 5. Finally,
p = pi ≤ pr, and p is the largest prime divisor of n, so p = pr. A similar argument gives that
p = qs. Now divide n by p giving us n′ which has the factorizations

n′ = p1 . . . pr−1 = q1 . . . qs−1.

By the induction hypothesis, r− 1 = s− 1 and pi = qi for each i in this factorization. Since
r − 1 = s− 1 we have r = s. So pr = p = qr. So pi = qi for all 1 ≤ i ≤ r.

By the principle of strong induction, the result holds for all n > 1. �

combining the last two lemmas gives the following:

Theorem 8. Every integer n > 1 can be written as the product of primes. The factorization
is essentially unique in the following sense: any two prime factorizations when written in
ascending order are equal.

2. Order function

The p-order function Ordp, whose definition we now discuss, provides another perspective
on unique factorization.

Let m be a nonzero integer and let p be a prime. Then m has a finite number of divisors.
Some of these divisors are of the form pn. For instance, p0 is trivially a divisor of m. Since
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there are a finite and nonzero number of divisors of the form pn, there is a maximum such
divisor pk. By Lemma 4 the exponent k appearing in the divisor pk is unique (if pk = pl then
k = l). We define Ordp(m) to be this nonnegative number k. We summarize this as follows:

Definition 9. If m is a nonzero integer and if p is a prime, then Ordp(m) is the largest
integer k such that pk divides m.

The following is an easy consequence of the definition.

Proposition 10. Let p be a prime and m be a nonzero integer. Then p | m if and only if
Ordp(m) > 0.

Proposition 11. Let m be a nonzero integer, and p be a prime. Then Ordp(m) = k if and
only if m = upk for some u relatively prime to p.

Proof. First suppose that Ordp(m) = k. Then by the above definition pk divides m. So
m = upk for some u. We need to show that u is prime to p. Suppose otherwise, that u = wp.
Then m = wpk+1, contradicting the fact that k is the largest integer such that pk | m.

Now suppose m = upk where u is prime to p. Let l = Ordp(m). By the first half of the
proof m = vpl for some v prime to p. Thus upk = vpl. By Lemma 4, we have k = l. So
k = Ordp(m). �

Corollary 12. If p is a prime and u is an integer such that p - u, then

Ordp(upk) = k.

Proposition 13. Let p be a prime. If a, b ∈ Z are non-zero then

Ordp(ab) = Ordp(a) + Ordp(b).

More generally, if each a1, . . . , an ∈ Z is nonzero then

Ordp(a1 · · · an) = Ordp(a1) + . . . + Ordp(an).

Proof. Let k = Ordp(a) and l = Ordp(b). By Proposition 11, a = pkm and b = pln for some
m, n ∈ Z with p - m and p - n. Thus

ab =
(
pkm

)(
pln
)

= pk+l(mn).

By Proposition 3, p - mn. Therefore, Ordp(ab) = k + l by Corollary 12.
The second statement follows by a straightforward induction argument. �

Proposition 14. If a ∈ Z is non-zero and if k ≥ 0 then

Ordp

(
ak
)

= k Ordp(a).

Proof. The case k = 0 follows from the observation that Ordp(1) = 0. Now suppose that the
result holds for a particular k. Then

Ordp

(
ak+1

)
= Ordp

(
aka
)

(Law of exponentiation)

= Ordp

(
ak
)

+ Ordp (a) (Prop. 13)

= k Ordp(a) + Ordp(a) (Induction Hyp.)

= (k + 1)Ordp(a).

The result follows from the principle of induction. �
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We can use these properites of the order function to prove the following:

Proposition 15. Suppose p1, . . . , pk are distinct primes. Then

Ordp (pm1
1 · · · p

mk
k ) =

{
mi if p = pi

0 if p 6∈ {p1, . . . , pk}

Proof. Using the previously proved properties of the order function gives

Ordp (pm1
1 · · · p

mk
k ) = m1Ordp(p1) + . . . + mkOrdp(pk).

Now observe that Ordp(pi) = 1 if p = pi, but Ordp(pi) = 0 if p 6= pi. The result follows. �

3. Another Version of Unique Factorization

We now use the order function to give another version of the unique factorization theorem.
We begin with a useful formula that, as a byproduct, gives the existence of a factorization
into prime powers.

Proposition 16 (Product formula). Let n be a positive integer, and let p1, . . . , pk be a finite
sequence of distinct primes that includes every prime divisor of n. Then

n =
k∏

i=1

p
Ordpi (n)

i .

Remark. Informally, this can be shown (when n > 1) by writing n as the product of primes
q1 . . . qn, and observing that Ordp(q1 . . . qn) is just the number of qi equal to p. One then
groups together equal qi in the prime factorization of n. What follows is a more formal proof
that uses strong induction.

Proof. (Strong induction) If n = 1, then Ordpi
(n) = 0 for each pi. The result now follows

from the fact that p0
i = 1, and the fact that 1 · · · 1 = 1.

Now assume that n > 1 and that the the result holds for all positive integers less than n.
Let p1, . . . , pk be a sequence of distinct primes that includes every prime divisor of n. Let pu

be a prime divisor of n. So n = m pu for some positive integer m < n. Observe that every
prime divisor of m is a prime divisor of n, so p1, . . . , pk is a sequence of distinct primes that
includes every prime divisor of m. By the induction hypothesis,

m =
k∏

i=1

p
Ordpi (m)

i .

Observe that Ordp(n) = Ordp(m) + Ordp(pu) holds for all primes p. In particular, if p 6= pu

then Ordp(m) = Ordp(n), but if p = pu then Ordp(m) = Ordp(n)− 1. Thus

m =

(
u−1∏
i=1

p
Ordpi (n)

i

)
pOrdpu (n)−1

u

(
k∏

i=u+1

p
Ordpi (n)

i

)
(Where we adopt the convention the first term is 1 if u = 1, and the last term is 1 if u = k).
Now multiply both sides by pu and simplify both sides. This gives

n = m pu =

(
u−1∏
i=1

p
Ordpi (n)

i

)
pOrdpu (n)

u

(
k∏

i=u+1

p
Ordpi (n)

i

)
=

k∏
i=1

p
Ordpi (n)

i
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as desired.
By the principle of strong induction, the result holds for all positive n. �

The following gives a uniqueness result

Proposition 17. Suppose N > 1 is an integer with factorizations

N = pm1
1 · · · pmr

r = qn1
1 · · · qns

s

where p1, . . . , pr are distinct primes, where q1, . . . , qs are distinct primes, and where each mi

and nj is positive. Then each pi is equal to some qj and mi = nj. Similarly, each qj is equal
to some pi and nj = mi.

Proof. Let p = pi. By Proposition 15, Ordp(N) = mi. So Ordp(N) > 0. By Proposition 15
again, applied to the second factorization, there must be a qj such that p = qj and Ordp(N) =
nj. We have then pi = p = qj, and mi = OrdP (N) = nj.

A similar argument gives the second result. �
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