
QUADRATIC RESIDUES

LECTURE NOTES: MATH 422, CSUSM, SPRING 2009. PROF. WAYNE AITKEN

When is an integer a square modulo p? When does a quadratic equation have roots
modulo p? These are the questions that will concern us in this handout.

1. The Legendre Symbol

The Legendre Symbol is a notation developed by Legendre for indicating whether or not an
integer is a square or not. It uses values 0, 1,−1 to indicate three basic possibilities. Before
discussing the Legendre Symbol, we first define some notation for Fp:

Definition 1. Let b ∈ Fp where p is a prime. We call b a square if there is an element a ∈ Fp

such that b = a2. Non-zero squares are also called quadratic residues.
The set of quadratic residues is written (F×p )2 or Qp. We will see later that (F×p )2 is closed

under multiplication (in other words, it is a subgroup of F×p ).
We are most interested in the case where p 6= 2. When p = 2 the situation is very easy:

both elements are squares.

Definition 2. If a ∈ Z then the class a in Zm is called the image of a in Zm. This terminology
is based on the function x 7→ x called the canonical homomorphism Z→ Zm.

Definition 3. Let a ∈ Z, and let p be an odd prime. Then the Legendre symbol
(

a
p

)
is

defined to be 0, +1, or −1.

The Legendre symbol
(

a
p

)
is defined to be 0 if the image of a in Fp is the zero element.

This case occurs if and only if p | a.

The Legendre symbol
(

a
p

)
is defined to be +1 if the image of a in Fp is a quadratic residue.

In other words, it is +1 if and only if a ∈ (F×p )2.

The Legendre symbol
(

a
p

)
is defined to be −1 in any other case. In other words, it is −1

whenever the image of a in Fp is not a square.

Remark. The values 0, +1,−1 are usually thought of as integers, but they can be thought of
as elements of Fp whenever it is convenient, or even as abstract symbols whose multiplication
table is defined in the usual way.

Likewise, the symbol
(

a
p

)
is usually defined for a ∈ Z, but one can also consider it as

defined for a ∈ Fp.

Exercise 1. Calculate
(

a
11

)
for all 0 ≤ a < 11 directly from the definition (without using

results developed below).

Date: Spring 2008, Spring 2009. Modified April 9, 2009.
1



2. Even and Odd Powers of Generators

Given a generator g for F×p , the quadratic residues are simply the even powers of g and
the quadratic nonresidues are the odd powers.

Theorem 1. Suppose p is an odd prime and let g be a generator of F×p . If e is even then ge

is a quadratic residue. If e is odd then ge is not a square.

Proof. If e is even, then e = 2k for some k. Thus ge = g2k =
(
gk

)2
. Hence ge is a square. It

is not zero, so it is a quadratic residue.
Suppose e is odd. We will show ge cannot be a square by assuming otherwise, and deriving

a contradiction. Suppose that ge = b2 for some b ∈ Fp. Since g is a generator and b is nonzero,
we have b = gk for some k. Thus ge = g2k. Since the order of g is p − 1 this implies that
e ≡ 2k modulo p − 1. Observe that 2 | (p − 1) since p is odd. Thus e ≡ 2k modulo 2. In
other words, e ≡ 0 modulo 2, contradicting the assumption that e is odd. �

Corollary 2. Suppose p is an odd prime and let g be a generator of F×p . If a is a quadratic
residue then a = ge for an even e. If a is a quadratic nonresidue then a = ge for an odd e.

Proof. Since g is a generator, we can write any nonzero a as ge for some integer e. If a is a
quadratic residue, then e odd contradicts the above theorem, so e is even. If a is a quadratic
nonresidue then e even contradicts the above theorem, so e is odd. �

Corollary 3. Suppose p is an odd prime. Then there are (p− 1)/2 quadratic residues, and
(p− 1)/2 quadratic nonresidues in F×p .

Proof. Let g be a generator. Every element of F×p can be written uniquely as ge where
0 ≤ e < p− 1. Half of such e are even and the other half are odd. �

Corollary 4. Suppose p is an odd prime and g is a generator of F×p . Then g is not a square.

Proof. Observe that g = g1 and e = 1 is odd. �

3. Euler’s Critera and Formula for the Legendre Symbol

We begin with a simple lemma:

Lemma 5. Suppose p be an odd prime and let g be a generator (primitive root) of F×p . Then

g(p−1)/2 = −1.

Proof. Recall that g has order p− 1 since it is a generator. Let a = g(p−1)/2. So

a2 =
(
g(p−1)/2

)2
= gp−1 = 1.

Since a2 = 1, the element a is a root of the polynomial x2 − 1. Thus a is 1 or −1. However,
a = g(p−1)/2 is not 1 since the order of g is p− 1 which is greater than (p− 1)/2. Therefore,
a = −1. �

Theorem 6 (Euler’s Criterion). Let p be an odd prime. If a ∈ F×p then a(p−1)/2 is either 1

or −1. Furthermore, a is a quadratic residue if and only if a(p−1)/2 = 1.
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Proof. Let g be a generator of F×p . Write a = ge. Then Lemma 5 gives us that

a(p−1)/2 = (ge)(p−1)/2 =
(
g(p−1)/2

)e
= (−1)e .

If e is even then a is a quadratic residue, and the above simplifies to 1. If e is odd then a is
a quadratic nonresidue and the above simplifies to −1. The result follows easily. �

Theorem 7. If p is an odd prime and a is an integer, then(
a

p

)
≡ a(p−1)/2 mod p.

Proof. There are three cases to consider.

First suppose that
(

a
p

)
= 0. By definition of the Legendre Symbol, a ≡ 0 mod p. Thus

Thus, a(p−1)/2 ≡ 0 mod p. The result follows.

Next suppose that
(

a
p

)
= +1. By definition of the Legendre Symbol, the image of a in F×p

is a quadratic residue. The result follows from Theorem 6.

Finally, suppose that
(

a
p

)
= −1. By definition of the Legendre Symbol, the image of a

in F×p is a quadratic nonresidue. The result follows from Theorem 6. �

Exercise 2. Calculate
(

a
11

)
for all 0 ≤ a < 11 using Theorem 7. Compare your answer to

Exercise 1.

4. Basic properties of the Legendre Symbol

Here are some very useful properties to know in order to calculate
(

a
p

)
. Throughout this

section, let p be an odd prime.

Property 1. If a ≡ r mod p then
(

a
p

)
=

(
r
p

)
. In particular,

(
p
p

)
= 0.

Proof. If a ≡ r mod p then a and r have the same image in Fp. Since Definition 3 depends
only on the images in Fp the result follows. �

Property 2. If a 6≡ 0 mod p then
(

a2

p

)
= 1. In particular,

(
1
p

)
= 1.

Proof. The image of a2 in F×p is trivially a square. �

Property 3.
(
−1
p

)
= (−1)(p−1)/2. In particular:

If p ≡ 1 mod 4, then
(
−1
p

)
= 1.

If p ≡ 3 mod 4, then
(
−1
p

)
= −1.

Proof. The first equation follows from Theorem 7.
Now we calculate (−1)(p−1)/2 in each case.
if p ≡ 1 mod 4, then p−1 = 4k for some k. Thus (p−1)/2 = 2k. In this case (−1)(p−1)/2 =

(−1)2k = 1.
If p ≡ 3 mod 4, then p− 3 = 4k for some k. Thus p− 1 = 4k + 2, and (p− 1)/2 = 2k + 1.

In this case (−1)(p−1)/2 = (−1)2k+1 = −1. �
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Property 4. For a, b ∈ Z we have
(

ab
p

)
=

(
a
p

) (
b
p

)
.

Proof. This follows from Theorem 7:(
ab

p

)
≡ (ab)(p−1)/2 ≡ a(p−1)/2 · b(p−1)/2 ≡

(
a

p

) (
b

p

)
mod p.

Since all the numbers on the left and right are ±1 we can replace congruence with equality
(1 and −1 are distinct modulo p since p > 2). �

Exercise 3. Use Property 4 to show that the product of two quadratic residues is a quadratic
residue. Thus the set Up = (F×p )2 of quadratic residues is closed under multiplication. (In
fact, it is a subgroup of F×p .)

Exercise 4. Use Property 4 to show that if a, b ∈ F×p are units such that one of them is a
quadratic residue but the other is not, then ab is not a quadratic residue.

Exercise 5. Use Property 4 to show that if a, b ∈ F×p are units that are both non-quadratic
residues, then ab is a quadratic residue.

Remark. If you know abstract algebra, you will observe that Property 4 tells us that the

map a 7→
(

a
p

)
is a group homomorphism F×p → {±1}. The kernel of this homomorphism is

the subgroup (F×p )2 of quadratic residues. The quadratic residues form a subgroup, but the
non-quadratic residues only form a coset.

Exercise 6. Give a multiplication table for the group Q11 = (F×11)
2. Hint: it should have 5

rows and columns.

5. Advanced properties of the Legendre Symbol

The properties of this section will be stated without proof.

Property 5. Let p be an odd prime, then
(

2
p

)
is determined by what p is modulo 8.

If p ≡ 1 or p ≡ 7 mod 8, then
(

2
p

)
= 1.

If p ≡ 3 or p ≡ 5 mod 8, then
(

2
p

)
= −1.

The following is a celebrated theorem of Gauss.

Property 6 (Quadratic Reciprocity). Let p and q be distinct odd primes. Then(
q

p

)
= (−1)

p−1
2
· q−1

2

(
p

q

)
.

Remark. As we discussed above, p−1
2

is even if p ≡ 1 mod 4, but is odd if p ≡ 3 mod 4.

Similarly, for q. So p−1
2
· q−1

2
is even if either p or q is congruent to 1 modulo 4, but is odd if

both are congruent to 3. So

If p ≡ 1 or q ≡ 1 mod 4, then
(

p
q

)
=

(
q
p

)
.

If p ≡ 3 and q ≡ 3 mod 4, then
(

p
q

)
= −

(
q
p

)
.
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Remark. Sometimes quadratic reciprocity is written as follows:(
q

p

) (
p

q

)
= (−1)

p−1
2
· q−1

2 .

6. Square roots

If b2 = a in a field F then b is called a square root of a. In this section we discuss a few
basic results concerning square roots in Fp and other fields.

Recall that every field F has a multiplicative identity 1. The element 2 ∈ F is defined to
be 1 + 1. In some fields 2 = 0, for example in F = F2. In other fields 2 6= 0. For example,
if F = R or if F = Fp with p an odd prime then 2 6= 0. In this handout we focus mainly on
fields where 2 6= 0.

Lemma 8. Let F be a field where 2 6= 0. In such a field, b 6= 0 implies b 6= −b.

Proof. Suppose otherwise that, b = −b. Add b to both side giving b + b = 0. This implies
2b = 0. But 2 is a unit, so 2−12b = 2−10. We conclude b = 0, a contradition. �

Proposition 9. Let F be a field where 2 6= 0. If a ∈ F has a square root b then −b is also
a square root. Furthermore, ±b are the only square roots of a.

Proof. Observe that (−b)2 = b2 = a. So the first statement follows.
Now we must show that ±b are the only square roots of a. First assume b 6= 0. Then by

Lemma 8, b and −b are two distinct solutions to x2 = a. However, the polynomial x2 − a
has at most two roots since its degree is two. So b and −b are the only square roots.

Finally, consider the case where b = 0. So −b = 0 and a = 0 as well. Now suppose c is
a non-zero square root of a = 0. Then c is a unit. Thus c2 is a unit since units are closed
under multiplication. This is a contradiction since c2 = a = 0. So b = 0 is the only square
root of a. �

Corollary 10. Let F be a field where 2 6= 0. If a, b ∈ F are such that a2 = b2 then a = ±b.

Proof. Let c = a2. Then a and b are both square root of c. The result follows from the
previous proposition. �

Proposition 11. Let p be an odd prime. Then the number of square roots of a in Fp is
given by the formula (a

p
) + 1.

Proof. There are three cases.

Case (a
p
) = 0. By definition, a = 0, which has 0 for a square root. By Proposition 9

the square roots are ±0. So 0 is the unique square root: there is exactly one square root.
Observe that (a

p
) + 1 = 0 + 1 = 1 gives the correct answer in this case.

Case (a
p
) = 1. By definition, a is a non-zero square, so it has a square root b in Fp. Clearly

b is non-zero (otherwise a would be 02, but a is non-zero). By Proposition 9 and Lemma 8
there is exactly one other square root, namely −b. So there are two square roots. Observe
that (a

p
) + 1 = 1 + 1 = 2 gives the correct answer in this case.

Case (a
p
) = −1. By definition, a is not a square in Fp. So there are no roots. Observe that

(a
p
) + 1 = −1 + 1 = 0 gives the correct answer in this case. �
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Exercise 7. Find all the square roots of all the elements of F11. For more practice try F7

or F5.

Exercise 8. For which primes p is it true that −1 has a square root? Find the first eight
primes with this property. For a few of these, find square roots of −1.

7. Quadratic Equations in General

In this section we will consider quadratic equations in a field F with 2 6= 0. Define 4 to
be 22. Since 2 is a unit, then 4 is also a unit in F . Thus 2−1 and 4−1 exist in F . We use
fractional notation for units. For example, let b/2 denote 2−1b.

Lemma 12 (Completing the square: part 1). Suppose b ∈ F . Then

x2 + bx = (x + b/2)2 − b2/4.

Proof. Use the distributive law to simplify the right-hand side. �

Lemma 13 (Completing the square: part 2). Suppose b, c ∈ F . Then

x2 + bx + c = (x + b/2)2 − (b2 − 4c)/4.

Proof. Observe that

x2 + bx + c =
(
(x + b/2)2 − b2/4

)
+ c (Lemma 12)

= (x + b/2)2 −
(
b2/4− 4c/4

)
= (x + b/2)2 − (b2 − 4c)/4.

�

Lemma 14 (Completing the square: part 3). Suppose a, b, c ∈ F where a 6= 0. Then

ax2 + bx + c = a

(
x +

b

2a

)2

− b2 − 4ac

4a
.

Proof. First divide the given polynomial by a. In other words, let b′ = b/a and c′ = c/a and
consider x2 + b′x + c′. By Lemma 13,

x2 + b′x + c′ = (x + b′/2)
2 − (b′2 − 4c′)/4 = (x + b/(2a))2 − (b2/a2 − 4c/a)/4.

Now multiply both sides by a and simplify. �

Remark. We call b2 − 4ac the discriminant of ax2 + bx + c.

Theorem 15. Suppose F is a field with 2 6= 0. Consider a quadratic polynomial ax2 +bx+c
where a, b, c ∈ F with a 6= 0. If ax2 + bx + c has a root in F then b2 − 4ac is a square in F .
In this case, the roots are

−b± d

2a
where d is a square root of b2 − 4ac.

Conversely, if b2 − 4ac is a square in F then ax2 + bx + c has roots in F . If b2 − 4ac is a
non-zero square, then there are two roots. If b2 − 4ac = 0 there is a unique root.
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Proof. Suppose that x = x0 is a root of ax2 + bx + c. By Lemma 14,

a

(
x0 +

b

2a

)2

− b2 − 4ac

4a
= 0

Thus

b2 − 4ac =

(
x0 +

b

2a

)2

4a2 =

((
x0 +

b

2a

)
2a

)2

.

This shows that b2 − 4ac is a square. Let d be a square root. So

d2 = b2 − 4ac =

((
x0 +

b

2a

)
2a

)2

= (2ax0 + b)2 .

By Corollary 10, 2ax0 + b = ±d. Thus x0 = (−b± d)/2a.
Conversely, suppose that b2−4ac is a square in F . Let d be a square root. Then (−b±d)/2a

are clearly roots of

a

(
x +

b

2a

)2

− b2 − 4ac

4a
.

By Lemma 14, these give roots of ax2 + bx + c.
We still must show that the roots are distinct if b2 − 4a is a non-zero square. In this case

d 6= 0 (otherwise d2 = b2−4ac would be zero). By Lemma 8 d 6= −d. Now suppose the roots
are not distinct: (−b + d)/2a = (−b− d)/2a. Then b + d = −b− d. This implies d = −d, a
contradiction. Thus we have two distinct roots. If b2−4ac = 0 then d = 0 (otherwise d2 6= 0,
a contradiction). So (−b + d)/2a = (−b− d)/2a. Hence there is exactly one root. �

Now we focus on the case where F = Fp where p is an odd prime.

Corollary 16. Let p be an odd prime, and consider the polynomial ax2 + bx+ c where a 6= 0
and where a, b, c ∈ Fp. Then the number of roots in Fp is given by the following (Legendre
Symbol based) formula: (

b2 − 4ac

p

)
+ 1.

8. Additional Practice Problems

Exercise 9. Compute
(

5
71

)
using the above properties. Likewise, compute

(
3
71

)
.

Exercise 10. Use the Legendre symbol to decide if 14 is a square in F101.

Exercise 11. How many roots does 2x2 + 3x + 4 have in F239?

Exercise 12. When is 5 a square modulo p where p is an odd prime? List the first eight
primes where this happens. Check a few of these to see if you can find square roots of 5.
(Hint: the answer depends on what p is modulo 5.)

Exercise 13. When is 7 a square modulo p where p is an odd prime? List the first eight
primes where this happens. Check a few of these to see if you can find square roots of 7.
(Hint: the answer depends on what p is modulo 28. Divide into two cases: p ≡ 1 mod 4 and
p ≡ 3 mod 4. Use the Chinese Remainder Theorem.)
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Exercise 14. Show that
(
−3
p

)
=

(
p
3

)
for all odd primes p. (Hint: divide into three cases.

(i) p = 3, (ii) p ≡ 1 mod 4, and (iii) p ≡ 3 mod 4 with p 6= 3.)

Exercise 15. For what odd primes p are there elements a and a + 1 in Fp that are multi-
plicative inverses to each other? List the first eight primes where this happens. Check a few
of these to see if you can find a. (Hint: show this happens if and only if x2 + x− 1 = 0 has
roots.)

Exercise 16. For what odd primes p are there elements a and b in Fp that are both additive
and multiplicative inverses to each other? List the first eight primes where this happens.
Check a few of these to see if you can find a and b. (Hint: show this happens if and only if
x2 + 1 has roots.)

Exercise 17. For what odd primes p are there elements a and b in Fp that add to 3 but
multiply to 2? Give examples.

Exercise 18. For what odd primes p are there elements a and b in Fp that add to 2 but
multiply to 3? List the first eight primes where this happens. Check a few of these to see
if you can find a and b. (Hint: the answer depends on whether −2 is a square modulo p.
Compute the Legendre symbol for each possible value of p modulo 8. Observe that knowing
p modulo 8 gives you knowledge of p modulo 4.)

Exercise 19. For what odd primes p is there a non-zero element in Fp whose cube is equal
to 3 times itself? List the first eight primes where this happens. Check a few of these primes
to see if you can find the desired element in Fp. (Hint: show this happens if and only if
x2 = 3 has a solution. Split into three cases: p = 3 and p ≡ 1 mod 4 and p ≡ 3 mod 4.)

Exercise 20. Which odd primes can divide integers of the form N2 +1? Give a list of seven
such primes. Give and justify a general answer.
Answer: primes such that p ≡ 1 mod 4.

Exercise 21. Which odd primes can divide integers of the form N2−5? Give a list of seven
such primes. Give and justify a general answer.
Answer: p = 5 and other primes such that p ≡ 1 mod 5 or p ≡ 4 mod 5.

Exercise 22. Which odd primes can divide integers of the form N2 +5? Give a list of seven
such primes. Give and justify a general answer.
Answer: p = 5 and other primes such that p ≡ 1, 3, 7, 9 mod 20.

Exercise 23. Which odd primes can divide integers of the form N2 + N + 1? Give a list of
seven such primes. Give and justify a general answer.
Answer: p = 3 and other primes such that p ≡ 1 mod 3.

Exercise 24. Which odd primes can divide integers of the form 2N2 + 5N + 1? Give a
list of seven such primes. Give and justify a general answer. Hint: it depends on what p is
modulo 17.
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