
QUADRILATERALS

MATH 410, CSUSM. SPRING 2008. PROFESSOR AITKEN

1. Introduction

Quadrilaterals played a important part in the history of the parallel postulate. For in-
stance, Clairaut proposed the axiom that rectangles exist as a substitute for the parallel
postulate. In addition, Saccheri and Lambert studied quadrilaterals in their bid to prove the
parallel postulate.

This handout studies quadrilaterals in the context of Neutral Geometry. We assume
the axioms, definitions, and previously proved results of Neutral Geometry including the
Saccheri-Legendre theorem. However, some of the definitions and results in this handout are
so basic that they are valid in earlier geometries such as Incidence-Betweenness Geometry
or IBC Geometry.

Definition 1 (Quadrilateral). Suppose A,B,C,D are points such that no three are collinear.
The quadrilateral �ABCD is defined to be AB∪BC∪CD∪DA. The points A,B,C,D are
called vertices. The segments AB,BC,CD,DA are called sides. The segments AC and BD
are called diagonals. The four vertex angles are defined to be ∠A = ∠DAB, ∠B = ∠ABC,
∠C = ∠BCD, and ∠D = ∠CDA.

The sides AB and CD are called opposite sides ; likewise, the sides BC and DA are
opposite. The vertices A and C are called opposite vertices ; likewise, the vertices B and D
are opposite.

Remark. The above definition could have been made in Incidence-Betweenness Geometry.

2. Regular Quadrilaterals

Usually we want to consider quadrilaterals that are well-behaved. For example, we don’t
usually want opposite sides to intersect, and we often want the vertex angles to be such that
opposite vertices are interior to these angles. This motivates the following definition.

Definition 2 (Regular Quadrilaterals). A quadrilateral �ABCD is called regular if (i) C
is interior to ∠A, (ii) D is interior to ∠B, (iii) A is interior to ∠C, and (iv) B is interior
to ∠D.

The following lemma implies that in regular quadrilaterals opposite sides do not intersect.

Lemma 1. A quadrilateral �ABCD is regular if and only if all the following holds (i) AB

does not intersect
←→
CD, (ii) BC does not intersect

←→
DA, (iii) CD does not intersect

←→
AB, and

(iv) DA does not intersect
←→
BC.
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Proof. This follows directly from the definition of the interior of an angle. For example,

suppose that C is interior to ∠A = ∠DAB. Then C ∼l D with l =
←→
AB and and C ∼m B

with m =
←→
AD. Thus CD does not intersect

←→
AB, and CB does not intersect

←→
AD. Using such

considerations yields the desired result. �

There is a corollary to the above lemma: you only have to check for regularity with one
pair of opposite vertices (the other pair follows along).

Corollary 2. Let �ABCD be a quadrilateral. If (i) C is interior to ∠A, and (ii) A is
interior to ∠C, then �ABCD is regular.

Proof. Use the definition of the interior of angles. Check that the conditions of the lemma
are satisfied. �

There is one class of quadrilaterals that are obviously regular:

Definition 3 (Parallelograms). A parallelogram is a quadrilateral such that each pair of
opposite sides is parallel.

Proposition 3. Parallelograms are regular.

Proof. This follows from Lemma 1: since opposite sides are parallel, we do not have to worry
about intersection. �

The following strengthens Lemma 1.

Lemma 4. If any three of the four conditions holds in Lemma 1, then �ABCD is regular.

Proof. Without loss of generality, we can suppose that (i), (ii), and (iii) hold. Suppose (iv)

fails. Let E be the point of intersection of DA and
←→
BC. Since BC does not intersect

←→
DA,

we know that B and C are on the same side of
←→
DA. So either E ∗B ∗ C or E ∗ C ∗B.

First suppose that E ∗B∗C. By the Crossbar Betweenness Proposition, the point C is not
in the interior of ∠EAB. But ∠EAB = ∠A, so C is not in the interior of ∠A. But conditions
(ii) and (iii) of Lemma 1, which we are assuming hold true, imply that C is interior to ∠A.
This gives a contradiction.

If E ∗ C ∗ B we get that B is not interior to ∠D, which contradictions conditions (i)
and (ii). So in either case, we get a contradiction. �

Corollary 5. If any two of the four requirements of Definition 2 hold then �ABCD is
regular.

The following says that trapezoids (defined using the American convention, as opposed to
the British convention) are regular.

Proposition 6. Suppose that �ABCD has the property that (i) AD ‖ BC and (ii) C and

D are on the same side of
←→
AB. Then �ABCD is regular.

Proof. Hint: use Lemma 4. �

Remark. All the definitions and results of this section could have been made in Incidence-
Betweenness Geometry.
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3. Defects of Quadrilaterals

In a previous handout we considered angle sums and defects of triangles. Here we extend
this idea to regular quadrilaterals.

Definition 4 (Angle Sum and Defect). The angle sum σABCD of a quadrilateral �ABCD
is defined by the formula

σABCD
def
= |∠A|+ |∠B|+ |∠C|+ |∠D|.

The defect δABCD is defined by the formula

δABCD
def
= 360− σABCD.

Proposition 7. If �ABCD is a regular quadrilateral, then σABCD = σABC + σADC
and δABCD = δABC + δADC. Furthermore σABCD ≤ 360 and δABCD ≥ 0.

Proof. Since �ABCD is regular, it follows that C is interior to ∠A and A is interior to ∠C.
Thus, by the Angle Measure Theorem (Neutral Geometry Handout),

|∠A| = |∠BAC|+ |∠CAD| and |∠C| = |∠BCA|+ |∠ACD|.
Thus

σABCD = |∠A|+ |∠B|+ |∠C|+ |∠D|
= |∠BAC|+ |∠CAD|+ |∠B|+ |∠BCA|+ |∠ACD|+ |∠D|

=
(
|∠BAC|+ |∠B|+ |∠BCA|

)
+

(
|∠CAD|+ |∠ACD|+ |∠D|

)
= σABC + σADC.

and

δABCD = 360− σABCD
= 360−

(
σABC + σADC

)
=

(
180− σABC

)
+

(
180− σADC

)
= δABC + δADC.

Now, by the Saccheri-Legendre theorem, δABC ≥ 0 and δADC ≥ 0. Thus δABCD =
δABC + δADC ≥ 0. This implies that σABCD ≤ 360. �

Remark. Of course, in Euclidean Geometry the defect is zero and the angle sum is 360. This
follows from the theorem on angle sums of triangles in Euclidean Geometry.

4. Rectangles

Definition 5 (Rectangles). A quadrilateral �ABCD is called a rectangle if each of its four
vertex angles is a right angle.

Lemma 8. Rectangles are parallelograms. Hence they are regular.

Proof. Use the Alternating Interior Angle Theorem and Proposition 3. �

We cannot prove the existence of rectangles in Neutral Geometry. Instead, we are consid-
ering the properties that they would have if they did exist.1

1As we will see, rectangles exist in Euclidean Geometry but not in Hyperbolic Geometry
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Proposition 9. If �ABCD is a rectangle, then δABCD = 0.

Proof. Right angles have angle measure 90. �

Corollary 10. If �ABCD is a rectangle, then 4ABC is a right triangle with δABC = 0.
Likewise, 4ADC is a right triangle with δADC = 0. Thus if rectangles exist, then there
exist triangles with defect zero.

Proof. Use Proposition 7. �

Proposition 11. Suppose �ABCD is a rectangle. Then 4BCA ∼= 4DAC.

Proof. Since δABC = 0, we know that |∠BAC|+ |∠BCA| = 90. But since C is interior to
∠BAD (because rectangle are regular), we get

|∠BAC|+ |∠CAD| = |∠BAD| = 90.

Set the two equations equal and solve: |∠BCA| = |∠CAD|. By AAS, we get

4BCA ∼= 4DAC.
�

Corollary 12. Opposite sides of a rectangle are congruent.

Proof. Let �ABCD be a rectangle. By the previous proposition, 4BCA ∼= 4DAC. So
BC ∼= DA and AB ∼= CD. �

5. Stacking Rectangles

Rectangles can be “stacked” to form larger and larger rectangles. This fact is important
in the proof that if rectangles exist then all triangles have defect zero (this proof will be
given in a future handout).

Proposition 13. Suppose there is a rectangle whose sides have length x and y. Then there
is a rectangle with sides of length 2x and y.

Proof. Let �ABCD is a rectangle with x =
∣∣AB∣∣ =

∣∣CD∣∣ and y =
∣∣BC∣∣ =

∣∣AD∣∣. Let E be

a point such that E ∗ A ∗ B and EA ∼= AB. Thus
∣∣EB∣∣ = 2x. Likewise, let F be a point

such that F ∗D ∗ C and FD ∼= CD. Thus
∣∣FC∣∣ = 2x. Our goal is to show that �EBCF

is a rectangle.
Observe that ∠EAD and ∠FDA are right since they are supplementary to angles of a

rectangle. By SAS, 4EAD ∼= 4BAD. So ED ∼= BD and ∠EDA ∼= ∠BDA. Now E
is interior to ∠FDA (we leave this to the reader), so |∠FDE| = 90 − |∠EDA|. Since
∠EDA ∼= ∠BDA, we have |∠FDE| = 90 − |∠BDA|. Since 4BAD is a right triangle of
defect 0, we have |∠ABD| = 90− |∠BDA|. Therefore, |∠FDE| = |∠ABD|.

So ∠FDE ∼= ∠ABD and FD ∼= AB and ED ∼= BD. Thus 4FDE ∼= 4ABD by SAS.
In particular, ∠F is right. A similar argument shows ∠E is right. Thus �EBCF is a
rectangle. �

Exercise 1. Show that E is interior to ∠FDA in the above proof.

Proposition 14. Suppose there is a rectangle. Then there are arbitrarily large rectangles in
the following sense. If M is any (large) real number then there is a rectangle whose sides all
have length bigger than M .
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Proof. Let�ABCD is the given rectangle. Let x =
∣∣AB∣∣ =

∣∣CD∣∣ and y =
∣∣BC∣∣ =

∣∣AD∣∣. By
the above proposition, there is a rectangle with sides 2x and y. Now apply the proposition
again and get a rectangle with sides 22x and y. One can keep doubling until one gets a
rectangle with sides 2kx and y, where k is chosen large enough so that 2kx > M .

This gives a rectangle with sides y and 2kx. The above proposition gives a rectangle with
sides 2y and 2kx. By repeating, we can keep doubling until we get a rectangle with sides 2ly
and 2kx where l is chosen so that 2l > M . �

6. Saccheri Quadrilaterals and Lambert Quadrilaterals

Since rectangles might not exist, we study the next best thing: Saccheri quadrilaterals
and Lambert quadrilaterals.

Definition 6 (Saccheri Quadrilateral). A Saccheri quadrilateral �ABCD is a quadrilateral
such that (i) ∠B and ∠C are right, (i) AB ∼= CD, and (iii) A and D are on the same side

of
←→
BC. The angles ∠B and ∠C are called base angles, and the side BC is called base. We

call AB and CD the sides.

Exercise 2. Show that
←→
AB and

←→
CD are parallel in the above definition. Hint: use the right

angles.

Lemma 15. Saccheri quadrilaterals �ABCD are regular quadrilaterals.

Proof. This follows from Lemma 6. �

Exercise 3. Show that if x and y are two real numbers, there is a Saccheri quadrilateral
with base of length x and sides of length y.

The following is an important result concerning Saccheri quadrilaterals.

Proposition 16. Let �ABCD be a Saccheri quadrilateral with base angles ∠B and ∠C.
Then ∠A and ∠D are congruent to each other and are acute or right. (If they are right,
then �ABCD is also a rectangle.)

Proof. First observe that4ABC ∼= 4DCB by SAS. So AC ∼= BD. Thus4BAD ∼= 4CDA
by SSS. So ∠A ∼= ∠D.

Thus σABCD = 90 + 90 + |∠A| + |∠D| = 180 + 2|∠A|. Since σABCD ≤ 360 for all
regular quadrilaterals, we get |∠A| ≤ 90 for Saccheri quadrilaterals. �

Definition 7 (Lambert Quadrilateral). A Lambert quadrilateral is quadrilateral with at
least three right vertex angles.

Lemma 17. Lambert quadrilaterals are parallelograms. Thus they are regular quadrilaterals.

Proof. Hint: Alternating Interior Angle Theorem. �

Proposition 18. Let �ABCD be a Lambert quadrilateral with angles ∠B, ∠C, and ∠D all
right. Then ∠A is acute or right.

Exercise 4. Prove the above theorem

The main result concerning Lambert quadrilaterals is the following:

Proposition 19. Let �ABCD be a Lambert quadrilateral with angles ∠B, ∠C, and ∠D all
right, but with ∠A acute. Then AB > CD and DA > BC.
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Proof. We will prove AB > CD; proving DA > BC is similar. Suppose otherwise. Then
either AB ∼= CD or AB < CD.

Suppose first that AB ∼= CD. Then �ABCD is a Saccheri quadrilateral. Thus ∠A ∼= ∠D.
So ∠A is right, a contradiction.

Suppose AB < CD. Let E be a point with C ∗ E ∗ D and CE ∼= AB. Then �ABCE
is a Saccheri quadrilateral. Thus ∠EAB ∼= ∠AEC. By the Exterior Angle Theorem,
∠AEC > ∠D, but ∠D > ∠A since ∠A = ∠BAD is acute. So ∠AEC > ∠BAD by
transitivity. Now E is in the interior of ∠BAD, so ∠BAE < ∠BAD. By transitivity,
∠AEC > ∠BAE. This contradicts the earlier observation that ∠EAB ∼= ∠AEC.

So in either case, we get a contradiction. �

Exercise 5. Show, in the above proof, that E is in the interior of ∠BAD. Hint: use
parallelism and the definition of interior.

From a Saccheri quadrilateral, we can get a Lambert quadrilateral by choosing midpoints
(which exist by an earlier result). This will yield some important corollaries.

Proposition 20. Let �ABCD be a Saccheri quadrilateral with base angles ∠B and ∠C.
Let M be the midpoint of AD and let N be the midpoint of BC. Then ∠AMN and ∠BNM
are right. In particular, �ABNM and �MNCD are Lambert quadrilaterals.

Proof. By SAS, 4ABN ∼= 4DCN . So AN ∼= DN . By SSS, 4AMN ∼= 4DMN . Thus
∠AMN ∼= ∠DMN . This tells that ∠AMN is right since it is congruent to its supplementary
angle.

By Proposition 16, ∠A ∼= ∠D. By SAS, 4BAM ∼= 4CDM . So BM ∼= CM . So
4BMN ∼= 4CMN by SSS. Thus ∠BNM ∼= ∠CNM . This tells that ∠BNM is right since
it is congruent to its supplementary angle. �

Corollary 21. Let �ABCD be a Saccheri quadrilateral with base angles ∠B and ∠C. As-
sume that �ABCD is not a rectangle. Then AD > BC.

Proof. Since �ABCD is not a rectangle, ∠A is acute. Let M and N be as in the above
proposition. So �ABNM is a Lambert quadrilateral. By an earlier property of Lambert
quadrilateral AM > BN . Thus AD > BC. �

Corollary 22. All Saccheri quadrilaterals are parallelograms.

Proof. Let �ABCD be a Saccheri quadrilateral with base angles ∠B and ∠C. Let M and

N be as in the above proposition. Then
←−→
MN is perpendicular to both

←→
AD and

←→
BC. So←→

AD||
←→
BC.

Since
←→
BC is perpendicular to both

←→
AB and

←→
CD. So

←→
AB||

←→
CD. �

7. A Lemma

The following will be useful later.

Lemma 23. Let �ABCD be a quadrilateral with right angles ∠B and ∠C, and such that

A and D are on the same side of
←→
BC. Then AB > DC implies that ∠A < ∠D.

Proof. Let A′ be a point such that A ∗A′ ∗B and A′B ∼= DC. Then �A′BCD is a Saccheri
quadrilateral. So, by Proposition 16, ∠BA′D ∼= ∠A′DC.
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But ∠BA′D > ∠A by the Exterior Angle Theorem. So ∠A′DC > ∠A by substitution.
Also, ∠ADC > ∠A′DC since A′ is interior to ∠ADC.2 Thus ∠A < ∠ADC = ∠D. �

2Can you see why A′ is interior? Hint: show that �ABCD is regular, so that B is interior. Now show A′

is also interior by referring to the definition and the fact that A ∗A′ ∗B.
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