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1. Introduction

In the previous document on IBC Geometry we saw that much of traditional Euclidean
geometry can be given a careful and rigorous treatment in IBC Geometry. There are, how-
ever, some principles of geometry that require more axioms. For example, in IBC Geometry
we cannot count on lines and circles intersecting as we expect them to. In addition, in IBC
Geometry we cannot expect to be able to associate real numbers to segments and angles,
and segments and angles to real numbers. These defects can be remedied by adding one or
more continuity or completeness axioms. Dedekind’s Axiom, although harder to use than the
other axioms of geometry, is powerful enough to prove all the continuity principles needed
in geometry, so it is often used as the single continuity axiom. Finally, there is much in
geometry that depends on a parallel axiom.

In this document, we will discuss a geometry that has all the axioms except for a parallel
axiom. It is called Neutral Geometry since it is neutral concerning the truth or falsity
of the traditional parallel axiom. We will implement Neutral Geometry simply by adding
Dedekind’s Axiom to the axioms of IBC Geometry. In the next document, we will add a
parallel axiom which will complete Euclidean Geometry.

Due to the complexity of using Dedekind’s Axiom, and the subtleties of the real number
system, we will confine some of the proofs of Neutral Geometry to appendices, or skip them
entirely. Thus this document is not as self-contained as the others in this series.

2. Neutral Geometry

Neutral Geometry is used to answer the question what can be proved without using a
parallel axiom? For example, you can prove that the angles of a triangle add up to at most
180 degrees (Saccheri-Legendre Theorem), but you cannot prove that the angles add to
exactly 180 degrees. This geometry is ideal for analyzing historic attempts to prove Euclid’s
Fifth Postulate (E5P). After all, if you want to prove E5P or an equivalent parallel axiom,
you should be able to use everything except that axiom. In other words, you should be able
to use Neutral Geometry.

If you add E5P (or something equivalent) to Neutral Geometry, then you get Euclidean
Geometry. But if you add the negation instead, you get Hyperbolic Geometry. So Neutral
Geometry gives the theorems that are common to both of these important geometries.1

Neutral Geometry remedies some of the weaknesses of IBC Geometry. For example, in IBC
Geometry you cannot use Euclid’s proof of the existence of equilateral triangles (Prop. I-1)
since it uses a fact about circles intersecting that is not available in IBC geometry In Neutral

Date: March 26, 2010. Version of May 10, 2010.
1Neutral Geometry does not cover all geometries. For example, results in Neutral Geometry do not

necessarily hold in Elliptic or Spherical Geometry.
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Geometry the required circles can be shown to intersect and so the proof of the existence of
equilateral triangles is valid.

We now begin the official development of Neutral Geometry. Neutral Geometry consists
of 5 undefined terms, 15 axioms, and anything that can be defined or proved from these.

Primitive Terms. The five primitive terms are point, line, betweenness, segment congru-
ence, and angle congruence. We will adopt all the notation and definitions from IBC Geom-
etry, so terms such as line segment or triangle congruence are ultimately defined in terms of
the primitive terms.

The Primitive Term Axiom for Neutral Geometry is a preliminary axiom telling us what
type of objects all the primitive terms are supposed to represent.

Axiom (Primitive Terms). The basic type of object is the point. Lines are sets of points.
Betweenness is a three place relation of points. If P,Q,R are points, then P ∗Q ∗R denotes
the statement that the betweenness relation holds for (P,Q,R). Segment congruence is a
two place relation of line segments, and angle congruence is a two place relation of angles.
If AB and CD are line segments, then AB ∼= CD denotes the statement that the segment
congruence relation holds between AB and CD. If α and β are angles, then α ∼= β denotes
the statement that the angle congruence relation holds between α and β.

The axioms of Neutral Geometry include the above Primitive Term Axiom together with
the axioms I-1, I-2, I-3, B-1, B-2, B-3, B-4, C-1, C-2, C-3, C-4, C-5, C-6, and Dedekind’s
Axiom discussed below.

Since the axioms of IBC Geometry are a subset of the axioms of Neutral Geometry, all
the propositions of IBC Geometry will hold in Neutral Geometry, and we will make free use
of any previously proved proposition of IBC Geometry.

Dedekind’s Axiom basically says lines have no “holes”. Before we can state this axiom,
we need to define the notion of a Dedekind cut.

Definition 1 (Dedekind Cut). A Dedekind cut of a line l is a partition of l into two non-
empty convex subsets Σ1 and Σ2. The sets Σ1 and Σ2 are called slices.

Remark. By the definition of partition (from set theory), the intersection of Σ1 and Σ2 is the
empty set, but the union is all of l.

Definition 2 (Cut Point). Suppose Σ1 and Σ2 are the slices of a Dedekind cut of a line l.
Then a cut point C is a point on l such that for all X, Y ∈ l such that C ∗X ∗ Y the points
X and Y are in the same slice.

Theorem 1. Suppose that Σ1 and Σ2 form a Dedekind cut of a line l. Suppose X ∗ C ∗ Y
where X and Y are in l and where C is a cut point of the given Dedekind cut. Then X and
Y are in different slices.

Proof. Suppose otherwise that X and Y are in the same slice, say Σ1. By convexity, C is
also in Σ1. Let Z be a point of Σ2. This point exists since each slice is nonempty. By
properties of four point betweenness we have either (i) Z −X −C − Y , (ii) X −Z −C − Y ,
(iii) X − C − Z − Y , or (iv) X − C − Y − Z. Case (ii) and (iii) cannot occur because in
these cases X ∗ Z ∗ Y , which violates convexity. Finally, (i) and (iv) cannot occur because
they violate the definition of cut point. For example, in case (iv) we have C ∗ Y ∗ Z, but Y
and Z are in different slices. So in each case we have a contradiction. �
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Remark. A cut point is intuitively a point touching both Σ1 and Σ2. It is a member of one
of the two sets, and borders the other.

Exercise 1. (Easy) Let Σ1 and Σ2 be a Dedekind cut of a line l. Show that a cut point, if
it exists, cannot be between two points of Σ1. Likewise, it cannot be between two points of
Σ2.

Exercise 2. Let Σ1 and Σ2 be a Dedekind cut of a line l. Show that a cut point, if it exists,
is between Σ1 and Σ2 in the following sense: if X ∈ Σ1 and Y ∈ Σ2 are not equal to the cut
point C then X ∗ C ∗ Y .

Lemma 2. A cut point for a Dedekind cut, if it exists, is unique.

Proof. Suppose C1 and C2 are distinct cut points. By Axiom B-2 there are points X and Y
such that C1 ∗X ∗C2 and C1 ∗C2 ∗Y . By the squeeze theorem, C1−X−C2−Y . Since C1 is
a cut point and C1 ∗X ∗C2, we have that X and C2 are in the same slice. Since C1 ∗ Y ∗C2

we have that Y and C1 are in the same slice. Thus, X and Y are in the same slice. However,
since X ∗ C2 ∗ Y , this contradicts Theorem 1. �

Now we give Dedekind’s Axiom, the final axiom of Neutral Geometry.2

Axiom (Dedekind’s Axiom). Every Dedekind cut of a line has a cut point.

Remark. As we saw above, a cut point is in some sense between Σ1 and Σ2. If a Dedekind cut
did not have a cut point, then there would be a “hole” between Σ1 and Σ2. So, informally
speaking, the above axiom says that lines have no holes. In other words, lines are “complete”.
Thus Dedekind’s Axiom is sometimes called the completeness axiom.3

Dedekind cuts and cut points can be defined for line segments as well.

Definition 3. A Dedekind cut of a line segment AB is a partition of AB into two nonempty
convex subsets Σ1 and Σ2 (called slices).

Definition 4. Suppose Σ1 and Σ2 are the slices of a Dedekind cut of AB Then a cut point
C is a point on AB such that for all X, Y ∈ AB such that C ∗X ∗ Y the points X and Y
are in the same slice.

There is a Dedekind Principle for segments:

Proposition 3. Every Dedekind cut of a line segment has a cut point.

2Note: the above theorem, exercises and lemma are valid in IBC geometry since they do not use the new
axiom. Also, these results are valid for Dedekind cuts of segments.

3The notion of a cut was originally formulated by Dedekind for Q and R in order to build a foundation
for the real numbers that is independent of geometry. Its later use in geometry is motivated by the concept
that a traditional geometric line should be related to the real number line R.

To see how it applies to Q and R, consider first the rational number line Q. It has a “hole” at
√

2 since√
2 is irrational. The rational numbers less than

√
2 forms one set Σ1 and the rational number greater than√

2 form another Σ2. This gives a Dedekind cut with no cut point in Q. If there were a cut point it would
be
√

2, but
√

2 6∈ Q. This shows that the rational numbers fail the axiom. The real numbers R, on the other
hand, satisfy the axiom. Interestingly, Dedekind constructed the real numbers out of cuts of Q.
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Proof. (Sketch) Let Σ1 and Σ2 be a Dedekind cut of a segment AB. Without loss of gener-
ality, suppose A ∈ Σ1. It follows that B ∈ Σ2 (otherwise, AB ⊆ Σ1 by convexity, but Σ2 is
not empty). Let Σ′1 be the union of Σ1 with {X | X ∗ A ∗ B}. Let Σ′2 be the union of Σ2

with {X | A ∗ B ∗ X}. One can show that Σ′1 and Σ′2 form a Dedekind cut of
←→
AB. Thus

there is a cut point C by Dedekind’s Axiom. One can show that C is a cut point for Σ1,Σ2,
and that C ∈ AB. �

Exercise 3. One step of the above proof, skipped in the sketch, is that Σ′1 and Σ′2 are
convex. Prove that Σ′1 in the proof is indeed convex.

Exercise 4. Show that if the cut point of a Dedekind cut of a segment is an endpoint A,
then {A} is one of the two slices.

3. Circles: some basics

In IBC geometry one cannot in general prove that circles that one expects to intersect
will actually intersect. A similar situation occurs between line segments and circles that
one expects to intersect. Neutral Geometry corrects this problem. Before describing these
results, we describe some preliminaries. None of the definitions and results in this preliminary
section require Dedekind’s Axiom or its consequences, and so they can be thought of as part
of IBC geometry. The next section will, however, depend on Dedekind’s Axiom.

Definition 5 (Circle). Let AB be a segment. Then the circle with center A and radius AB
is defined to be the set of all points X such that AX ∼= AB. In other words, it is the set

{X | AX ∼= AB}.

If AX ∼= AB then AX is called a radius.

Remark. Let γ be the circle with center A and radius AB. If AY is another radius of γ, then
γ can also be described as the circle with center A and radius AY . This is easily proved
using the fact that ∼= is an equivalence relation.

Definition 6 (Interior and Exterior of a Circle). Let γ a circle with center A and radius AB.
Then the interior of γ is defined to be the set

{X | AX < AB} ∪ {A}.
The exterior of γ is defined to be the set

{X | AX > AB}.
By the trichotomy law for segments, every point is either (i) in the interior, (ii) in the circle
itself, or (iii) in the exterior; furthermore, exactly one of these possibilities occurs.

Definition 7 (Disk). The union of a circle γ with its interior is called a closed disk. The
interior is sometimes called an open disk.

Definition 8 (Tangent, Chord, Diameter). A tangent to a circle γ is a line that intersects
γ in exactly one point. If C,D are distinct points on a circle γ, then CD is called a chord.
A chord that contains the center of γ is called a diameter.

Proposition 4. The interior of a circle is convex.
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Proof. (sketch) Let X, Y be in the interior, we must show that XY is a subset of the interior.
Let O be the center of the circle. The case where X, Y,O are colinear is easier, and is left to
the reader. So suppose that X, Y,O are not collinear. Then we can use the following lemmas
to show that XY is contained in the interior. �

Lemma 5. Let X, Y,O be noncollinear points such that OX < OY If X ∗ B ∗ Y then
OB < OY

Lemma 6. Let X, Y,O be noncollinear points such that OX ∼= OY . If X ∗ B ∗ Y then
OB < OY

Exercise 5. Prove the above lemmas. Hint: use a result from the IBC handout concerning
the triangle 4OXY (look in the section on inequalities involving triangles).

The following can be proved in a similar manner.

Proposition 7. Closed disks are convex.

Exercise 6. Show that the exterior of a circle is not convex.

We will need the following lemma later.

Lemma 8. Suppose γ is a circle, and that AB is a line segment with A interior to γ and
B exterior to γ. Then the intersection of AB and the interior of γ is convex, and the
intersection of AB with the exterior of γ is convex.

Proof. By Proposition 4 the interior of γ is convex. From Incidence-Betweenness geometry,
we know that AB is convex. Therefore, the intersection is convex.

Now we show that the intersection of AB and the exterior of γ is convex. Suppose not.
Then there are points X ∗Z ∗Y on AB such that X and Y are in the exterior of γ, but Z is
not. In other words, Z is in the closed disk. Switching the labels X and Y if necessary, we
can assume A ∗X ∗ Y . This implies A-X-Z-Y , which in turn implies that A ∗X ∗ Z. Since
A and Z are in the closed disk, and the closed disk is convex, we have X is in the closed
disk, a contradiction. �

4. Intersections with Circles

In Neutral Geometry we have the following intersection principle:

Theorem 9 (Circle-Segment Intersection Principle). Suppose that γ is a circle, and that
AB is a segment such that A is in the interior of γ and B is in the exterior of γ. Then the
segment must intersect the circle.

Proof. (sketch) Suppose AB does not intersect γ. Let Σ1 be the set of points of AB in the
interior of γ, and let Σ2 be the set of points of AB in the exterior of γ. By Lemma 8, this
gives a Dedekind cut of the segment AB.

By Proposition 3 there is a cut point C ∈ AB. The cut point must be in Σ1 or Σ2.
However, one can show that no point of Σ1 can be a cut point.4 Similarly, no point of Σ2

can be a cut point. This gives a contradiction. �

4This can be shown using the version of the triangle inequality presented in the IBC handout. Details are
left to the reader.

5



The proof of the following will be discussed in an appendix.

Theorem 10 (Circle-Circle Intersection Principle). Suppose that γ and δ are two circles.
If γ contains both a point in the interior of δ and a point in the exterior of δ, then gamma
contains a point of δ. In other words, the circles intersect.

Here is an application of a theorem that can be proved in Neutral Geometry:

Proposition 11 (Euclid’s First Proposition). If AB is a segment, then there is a point C
such that 4ABC is an equilateral triangle.

Proof. Let γ be the circle with center A and radius AB. Let δ be the circle with center B
and radius BA. Observe that B ∈ γ, so γ has a point in the interior of δ. Let D be a point
such that D ∗ A ∗ B and AB ∼= AD (Axiom B-2 and C-2). Then D ∈ γ. But DB > AB so
D is in the exterior of δ.

By the Circle-Circle Intersection Principle, there is a point C in the intersection of γ and δ.
By the following lemma, A,B,C are non-collinear, so we get a triangle4ABC. Since C ∈ γ,
we must have AC ∼= AB. Since C ∈ δ we must have BC ∼= BA. Thus all three sides of
4ABC are congruent. So 4ABC is an equilateral triangle. �

Lemma 12. In the above proof, C 6∈
←→
AB.

Proof. By uniqueness assertion of Axiom C-2, D is the only point of γ on
−−→
AD and B is the

only point of γ on
−→
AB. So

←→
AB ∩ γ = {B,D}. Now C 6= B and C 6= D since B is interior

to δ, D is exterior to δ, and C ∈ δ. Thus C 6∈ γ ∩
←→
AB. Hence, C 6∈

←→
AB since C ∈ γ. �

5. The Archimedean Principle

Definition 9. Let EF be a line segment.5 Then 1 · EF is defined to be EF . Let F2 be
a point such that E ∗ F ∗ F2 and FF2

∼= EF (Axioms B-2 and C-2). Define 2 · EF to be
EF2. We continue recursively. Suppose we have defined k · EF to be a segment EFk where

Fk 6= E is on the line
←→
EF . Let Fk+1 be a point such that E ∗ Fk ∗ Fk+1 and FkFk+1

∼= EF .
Define (k + 1) · EF to be the segment EFk+1. In this way we define n · EF for all positive
integers n.

Here is an important principle of Neutral Geometry that cannot be proved in IBC Geom-
etry. Its proof will be discussed in an appendix.

Theorem 13 (Archimedean Principle). Suppose AB and EF are line segments. Then there
is an integer n such that n · EF > AB. (This holds no matter how small EF is or how big
AB is)

Remark. This principle, which is not a theorem of IBC geometry, is the key to introducing
real valued measures of segments and angles.

Remark. In IBC Geometry we proved that every segment has a unique midpoint, so we
can define 1

2n EF for all n ≥ 0 (something like this is done to prove Theorem 14). A

consequence of the Archimedean Principle is the following principle: Suppose AB and EF
are line segments. Then there is an integer n such that 1

2n EF < AB. (This holds no matter

how large EF is or how small AB is.)

5And fix an ordering of the endpoints.
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6. Segment Measure

Up to this point we have not really needed the real numbers R. We have only used R for
models of geometry, but not in the theoretic development of geometry itself. This is in the
spirit of Euclid who did not assume the existence of such a system of numbers.

However, to do geometry in a modern way, real numbers are useful. For example, They
measure segments and angles. They can also be used to measure areas and volumes, but
this is beyond the scope of these notes.

The following is a theorem of Neutral Geometry since its proof requires the Archimedean
Principle.6

Theorem 14 (Segment Measure). Let OI be a fixed segment (called the unit). There is a
unique way to assign to each segment AB a positive real number

∣∣AB∣∣ ∈ R (called its length)
in such a way that

(i) A ∗B ∗ C if and only if
∣∣AC∣∣ =

∣∣AB∣∣ +
∣∣BC∣∣.

(ii)
∣∣AB∣∣ =

∣∣BC∣∣ if and only if AB ∼= BC.

(iii)
∣∣OI∣∣ = 1.

Furthermore

(iv)
∣∣AB∣∣ < ∣∣CD∣∣ if and only if AB < CD.

and
(v) for each positve x ∈ R, there exists a segment AB such that

∣∣AB∣∣ = x.

Proof. (Sketch) Let I1 be the midpoint of OI. Let I2 be the midpoint of OI1. In general, let
Ik+1 be the midpoint of OIk. Intuitively,

∣∣OIk∣∣ should be 1/2k.

Let AB be a given segment. For each integer i ≥ 0 let ni be the maximum natural number
such that ni ·OIi is not greater than AB. The Archimedean Principle guarantees that such
ni exists for each i. Define the ith approximation to the length as follows:

mi
def
=

ni

2i
.

One can show that ni+1 = 2ni or ni+1 = 2ni + 1. In particular,

mi ≤ mi+1 ≤ mi+1 +
1

2i+1
.

One can also show that mi is bounded below by m0 and bounded above by m0 + 1. One
can also show, by the Archimdean Principle, that ni > 0 for sufficiently large i. This means
that the sequence (mi) is monotonic and bounded. There is a property of the real numbers
R that guarantees that the limit exists. Define the length as∣∣AB∣∣ def

= lim
i→∞

mi.

Since mi > 0 for sufficiently large i, we can show that the limit is positive. (Observe that
the approximation m0 gives the integral part of the length).

In the special case that AB = OI we see that ni = 2i, and so mi = 1 for all i. This means
that the length (the limit) is 1.

6The Archimedean Principle, IBC Geometry, and some basic properties of R are all that is needed for
most of the proof. Part (v), however, requires more than just the Archimedean Principle. It requires a direct
appeal to Dedekind’s Axiom.
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If A ∗ B ∗ C then the integer ni used for AC is approximately the sum of the integers
needed for AB and BC. In fact, the difference is at most two. When we divide by 2i and
take the limit we find that the length is additive.

We skip the proof of the rest of the details (see an Appendix for more information). �

Remark. Note that < has two meanings: one meaning was established for line segments in
IBC geometry. The other is its meaning for real numbers. The above shows that these two
are compatible.

Theorem 15 (Triangle Inequality). Let 4ABC be a triangle. Then
∣∣AC∣∣ < ∣∣AB∣∣ +

∣∣BC∣∣.
Proof. Let D be a point such that A∗B∗D and BD ∼= BC (Axiom B-2 tells us that there is a

point with A∗B∗X, and Axiom C-2 tells us that there is a point D on the ray
−−→
BX such that

BD ∼= BC). Then AC < AD by the IBC form of the triangle inequality (See IBC handout).
So

∣∣AC∣∣ < ∣∣AD∣∣ (Theorem 14 part iv). Since A ∗ B ∗ D we have
∣∣AD∣∣ =

∣∣AB∣∣ +
∣∣BD∣∣

(Theorem 14 part i). Thus
∣∣AC∣∣ < ∣∣AB∣∣ +

∣∣BD∣∣.
Finally,

∣∣BD∣∣ =
∣∣BC∣∣ since BD ∼= BC (Theorem 14 part ii). �

7. Angle Measure

In a similar manner, we can define angle measure.

Theorem 16 (Angle Measure). There is a unique way to assign to each angle α a positive
real number |α| ∈ R (called its degree measure) in such a way that

(i) if D is interior to ∠BAC then |∠BAC| = |∠BAD|+ |∠DAC|.
(ii) |α| = |β| if and only if α ∼= β.

(iii) α is a right angle if and only if |α| = 90.

Furthermore,

(iv) |α| < |β| if and only if α < β.

(v) |α| < 180 for every angle α,

(vi) if α and β are supplementary, then |α|+ |β| = 180, and

(vii) for each 0 < x < 180 there exists an angle α such that |α| = x.

Proof. (sketch) The idea is similar to segment measure, except that a fixed right angle γ0

plays the role of OI. We bisect γk to form γk+1. We define the ith approximation by

mi
def
= 90

ni

2i

where ni is defined in an analogues manner as in the proof of Theorem 14.
Various lemmas have to be proved, such as the fact that if you subtract a right angle from

an obtuse angle, the result is acute. �

Proposition 17. Let 4ABC be a triangle. Then |∠B|+ |∠C| < 180.

Proof. Let D be such that B ∗ C ∗D (Axiom B-2). By the Exterior Angle Theorem of IBC
Geometry, ∠ACD > ∠B. So |∠ACD| > |∠B| (Theorem 16 part iv). Since ∠C and ∠ACD
are supplementary, |∠C|+ |∠ACD| = 180 (Theorem 16 part vi). Thus

|∠B|+ |∠C| < |∠ACD|+ |∠C| = 180.

�
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8. Defects of Triangles

Definition 10 (Angle Sum and Defect). If 4ABC is a triangle, then the angle sum is
defined as

σABC
def
= |∠A|+ |∠B|+ |∠C|.

The defect is defined as

δABC
def
= 180− σABC.

In other words,
δABC = 180− |∠A| − |∠B| − |∠C|.

One reason for using defects instead of simple angle sums is that fact that it adds when a
triangle is subdivided:

Proposition 18. Let 4ABC be a triangle, and let D be such that A ∗D ∗ C. Then

δABC = δABD + δDBC.

Proof. By the Crossbar-Betweenness Proposition, D is interior to ∠B. By the Angle Mea-
sure Theorem, |∠B| = |∠ABD| + |∠DBC|. In addition, since ∠ADB and ∠BDC are
supplementary, |∠ADB|+ |∠BDC| = 180. Thus

δABD + δDBC = 180− |∠A| − |∠ABD| − |∠ADB|
+180− |∠DBC| − |∠BDC| − |∠C|

= 360− |∠A| − |∠C| −
(
|∠ABD|+ |∠DBC|

)
−

(
|∠ADB|+ |∠BDC|

)
= 360− |∠A| − |∠C| − |∠B| − 180

= 180− |∠A| − |∠C| − |∠B|
= δABC.

�

9. The Saccheri-Legendre Theorem

The Saccheri-Legendre Theorem is one of the most important theorems of neutral geom-
etry.7

The following will be critical to the proof. It says that we can make an angle of a triangle
smaller while preserving the angle sum and defect.

Lemma 19. Let 4ABC be a triangle where ∠A has measure α. Then there is another
triangle 4XY Z such that σABC = σXY Z and δABC = δXY Z, and such that 4XY Z
has an angle with measure at most α/2.

Proof. Let M be the midpoint of BC. Let D be such that A ∗M ∗ D and AM ∼= MD.
By the Crossbar-Betweenness Proposition, M is in the interior of ∠A. This implies that
if α1 = |∠BAM | and if α2 = |∠MAC| then α = α1 + α2. By the Crossbar-Betweenness
Proposition, M is in the interior of ∠ACD, so |∠ACD| = γ+γ′ where γ is the angle measure
of ∠MCA and γ′ is the angle measure of ∠MCD.

7It cannot be proved in IBC geometry due to a model given by M. Dehn.
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By SAS, 4AMB ∼= 4DMC (using the Vertical Angle Theorem). So ∠B ∼= ∠MCD
(where ∠B is the angle in the original triangle). Thus γ′ = β where β is the angle measure
of ∠B. Likewise, ∠CDM ∼= ∠BAM . So ∠CDM has measure α1.

Observe that σABC and σACD are both α1 + α2 + β + γ. So σABC = σACD. This
implies δABC = δACD as well.

Now α = α1 +α2, so some αi must be less than α/2. If α1 ≤ α/2 then ∠ADC has measure
α1 ≤ α/2. If α2 ≤ α/2 then ∠DAC has measure α2 ≤ α/2. In either case, 4ACD has an
angle of measure αi ≤ α/2. Let 4XY Z be 4ACD. �

Corollary 20. Let 4ABC be a triangle such that ∠A has measure α. Let k be a positive
integer. Then there is another triangle 4XY Z such that δABC = δXY Z and such that
4XY Z has an angle with measure at most α/2k.

Proof. Use the above lemma k times. �

Lemma 21. Suppose δABC < 0, and let ε = −δABC. Then every angle of 4ABC has
angle measure greater than or equal to ε.

Proof. Suppose, to the contrary, that |∠A| < ε. Now |∠B|+ |∠C| < 180 by Proposition 17.
Thus

|∠A|+ |∠B|+ |∠C| < 180 + ε.

So

−ε < 180− |∠A| − |∠B| − |∠C|

a contradiction to the assumption that δABC = −ε. �

Now we can prove the main result.

Theorem 22 (Saccheri-Legendre). If 4ABC is a triangle, then δABC ≥ 0. In other words

|∠A|+ |∠B|+ |∠C| ≤ 180.

Proof. Suppose not. Then δABC = −ε for some positive ε.
Let α = |∠A|. Since the sequence α/2i converges to 0, there is a k such that α/2k < ε.

By Corollary 20, there is a triangle 4XY Z such that δXY Z = δABC = −ε, and such that
∠X (say) has measure at most α/2k. So |∠X| < ε contradicting the Lemma 21. �

Because of the Saccheri-Legendre Theorem, we can conclude the following.

Corollary 23. Let 4ABC be a triangle, and let D be such that A∗D ∗C. Then δABC = 0
if and only if δABD = δDBC = 0.

Proof. Suppose δABC = 0. By Proposition 18,

0 = δABC = δABD + δDBC,

and by the Saccheri-Legendre Theorem all terms are non-negative. The conclusion follows.
The other direction follows from Proposition 18. �
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10. Appendix: Proof of the Archimedean Principle

This appendix gives a sketch of the proof of the Archimedean Principle in Neutral Geom-
etry.

Suppose the Archimedean Principle fails for a particular AB and EF . Let Σ1 be the set
of elements X ∈ AB with the following property: X = A or the theorem is true concerning
AX and EF . For example, Σ1 contains every point D on AB such that AD < EF (just
take n = 1 in this case). Let Σ2 be the set of elements X ∈ AB such that D 6= A and such
that the theorem fails of AX and EF .

By assumption A ∈ Σ1 and B ∈ Σ2. Thus Σ1 and Σ2 is a partition of AB into two
non-empty subsets. If we show that Σ1 and Σ2 are convex then we can conclude that they
form a Dedekind cut. Showing convexity is pretty straightforward. For example, suppose
that X, Y ∈ Σ1. We discuss the case where AY > AX. Other cases are similar. If Z ∈ XY
it follows that AZ < AY . Since the theorem of true of AY and EF , it is true of AZ and
EF for the same value of n. Thus Z ∈ Σ1. So XY ⊆ Σ1. This shows Σ1 is convex. To show
that Σ2 is convex suppose that X, Y ∈ Σ2. We discuss the case where AX < AY . Other
cases are similar. If Z ∈ XY it follows that AX < AZ. If Z ∈ Σ1 then it would follow
that X ∈ Σ1 using the same value of n, a contradiction. Thus Z ∈ Σ2. We conclude that
XY ⊆ Σ2. Hence Σ2 is also convex.

By Dedekind’s Axiom, there is a cut point C. Either C ∈ Σ1 or C ∈ Σ2.
First consider the case where C ∈ Σ1 and C 6= A. So there is an integer n such that

n · EF > AC. In other words, there is a point X with A ∗ C ∗X such that n · EF ∼= AX.
Since AX does not intersect Σ2, contradicting the fact that C is a cut point. The case C = A
is similar (take n = 1).

Now consider the case where C ∈ Σ2. Let X be a point of
−→
CA such that CX ∼= EF . Since

C is a cut point, there must be a point Y ∈ Σ1 in CX. This means that the theorem is true
for AY for some n (take n = 1 if Y = A). This implies that the theorem is true for AC for
n+ 1. So C ∈ Σ2, a contradiction.

In any case, we get a contradiction.

11. Appendix: Additional Details

NEXT DRAFT?
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