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1. Introduction

Euclidean Geometry is obtained by adding a parallel axiom to Neutral Geometry. What
parallel axiom do you add? It turns out there are several axioms that work equally well. For
example, there is Euclid’s original Postulate V, there is a postulate asserting uniqueness of
parallels, and there is the converse to the alternating interior angle theorem. It turns out
that these are all in some sense equivalent, and there are others as well.

A good place to do comparison shopping for parallel axioms is in a geometry that has
as much as possible without actually containing a parallel axiom. This geometry is Neutral
Geometry. When we say that parallel axioms A and B are equivalent, what we mean is that
A ⇐⇒ B can be proved in Neutral Geometry. In this document we give several statements,
and show that they are all equivalent in Neutral Geometry. Any statement equivalent in this
way to Euclid’s Fifth Postulate, or anything equivalent to Euclid’s Fifth Postulate, is called
a Euclidean condition.

We will only discuss the most straightforward Euclidean conditions in this document.
Others will be discussed in a later document.

2. Equivalence of E5P and UPP

Recall Euclid’s Fifth Postulate (E5P): For any pair of distinct lines l and m, and any
transversal t to these lines, if the sum of the angle measures of the two interior angles on
a given side of t is less than 180, then l and m must intersect on that side of t. We will
officially phrase this as follows:

Definition 1 (E5P). Euclid’s Fifth Postulate (E5P) is the following statement: Suppose

that (i) l =
←→
PA and m =

←→
QB are distinct lines such that P 6= Q, (ii) A and B are on the

same side of t =
←→
PQ, and (iii) |∠APQ| + |∠BQP | < 180. Then l and m intersect in a

point C, and A,B and C are all on the same side of t.

Remark 1. We have modernized this a bit. Euclid did not use degrees, so the statement in
his Elements does not mention 180. Instead it mentions the sum of two right angles. Also
the Elements does not clearly distinguish between angles and angle measures.

There is another statement that many prefer to use as an axiom instead:

Definition 2 (UPP). The Unique Parallel Property (UPP) is the following statement: Given
any line l and any point P not on l, there is a unique line containing P that is parallel to l.
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Of course, neither Euclid’s Fifth Postulate (E5P) nor the Unique Parallel Property (UPP)
is an axiom of Neutral Geometry. It turns out that neither is a theorem of Neutral Geometry.
What can be proved is that these statements are equivalent in Neutral Geometry.

Proposition 1. In Neutral Geometry E5P and UPP are equivalent. In other words,

E5P ⇐⇒ UPP

is a theorem in Neutral Geometry.

Proof. First assume E5P. We must prove UPP. So let l be a line and P a point not on l.
By a result of IBC Geometry, we can drop a perpendicular from P to l. Let Q be the foot.

Thus l ⊥
←→
PQ. Again, by a result of IBC Geometry there is a line m1 perpendicular to

←→
PQ

that contains P . According to IBC Geometry, l ‖ m1 since l and m1 are both perpendicular

to the same line
←→
PQ.

We must show that there are no other lines parallel to l containing P . To do so, suppose
that m2 is another such line. Then choose points X and Y on m2 such that X ∗ P ∗ Y
(Axioms I-2 and B-2). One of the angles ∠XPQ or ∠Y PQ must be acute since they are not
right, and they are supplementary. Thus the sum of interior angles is less than 180 on one

side of
←→
PQ. So m2 intersects l by E5P (our assumption). This contradicts the assumption

that m2 is parallel to l. Thus m1 is the unique parallel. We have established UPP.

Now assume UPP. We must prove E5P. So, suppose that (i) l =
←→
PA and m =

←→
QB

are distinct lines such that P 6= Q, (ii) A and B are on the same side of t =
←→
PQ, and

(iii) |∠APQ| + |∠BQP | < 180. Let D be a point such that B ∗ Q ∗D (Axiom B-2). Then
|∠PQD| = 180 − |∠PQB|. This implies that |∠PQD| 6= |∠APQ| (otherwise |∠APQ| +
|∠BQP | = 180). By Axiom C-5, there is a ray

−−→
PX such that ∠XPQ ∼= ∠PQD and such

that X and A are on the same side of t (and so X and D are on opposite sides of t). Let

l′ =
←→
PX. Then l′ ‖ m by the Alternating Interior Theorem of Neutral Geometry. Now l 6= l′

since |∠XPQ| 6= |∠APQ|. By UPP this means that l is not parallel to m. Thus l must
intersect m at a point, call it C.

To establish E5P we still need to show that A and C are on the same side of t. Suppose
A and C are on opposite sides of t. Then we have a triangle 4CPQ such that ∠CPQ is
supplementary to ∠APQ, and angle ∠CQP is supplementary to ∠BQP . Since |∠APQ| +
|∠BQP | < 180, we get |∠CPQ|+ |∠CQP | > 180 which contradicts an earlier theorem that
the sum of any two angle measures of a triangle are less than 180. Thus C and A must be
on the same side of t. We have established E5P. �

3. Equivalence of UPP and ConAIA

Recall that the Alternating Interior Angle Theorem is a theorem of IBC Geometry. We
now consider the converse:

Definition 3 (ConAIA). The converse to the Alternating Interior Angle Theorem is the
following statement: for any pair of distinct parallel lines l and m and any transversal t to
these lines the alternating interior angles are congruent.

In other words, if l =
←→
AP and m =

←→
QB are parallel, and if A and B are on opposite sides

of t =
←→
PQ, then ∠APQ ∼= ∠BQP .
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Proposition 2. In Neutral Geometry UPP and ConAIA are equivalent. In other words,

UPP ⇐⇒ ConAIA

is a theorem in Neutral Geometry.

Proof. First assume that UPP holds. We must prove ConAIA, so suppose l =
←→
AP and

m =
←→
QB are parallel, and that A and B are on opposite sides of t =

←→
PQ. We need to show

that ∠APQ ∼= ∠BQP . By Axiom C-5 there is a point A′ on the same side of t as A such
that ∠A′PQ ∼= ∠BQP . By the Alternating Interior Angle Theorem of IBC Geometry, this

implies that l′ ‖ m where l′ =
←→
A′P . By UPP (our assumption) we have that l = l′ since both

lines contain P and both are parallel to m. So ∠APQ = ∠A′PQ. Thus ∠APQ ∼= ∠BQP
as desired.

Now assume ConAIA. We must prove UPP, so let l be a line and P a point not on l. By a
result of IBC Geometry, we can drop a perpendicular from P to l. Let Q be the foot. Thus

l ⊥
←→
PQ. Again, by a result of IBC Geometry there is a line m1 perpendicular to

←→
PQ that

contains P . According to IBC Geometry, l ‖ m1 since l and m1 are both perpendicular to

the same line
←→
PQ. We must show that there are no other lines parallel to l containing P . To

do so, suppose that m2 is any such such line. ConAIA implies that m2 ⊥
←→
PQ. By a result

of IBC Geometry there is a unique perpendicular to
←→
PQ containing P . Thus m1 = m2. We

have established UPP. �

4. The Proclus Property

The ancient Greek Mathematician Proclus used something like the following statement in
his study of Euclid’s Fifth Postulate.

Definition 4 (Proclus). The Proclus Property is the following statement: Suppose l,m, t
are distinct lines. If l ‖ m and if t intersects m, then t must intersect l.

Proposition 3. In Neutral Geometry UPP and the Proclus Property are equivalent. In other
words,

UPP ⇐⇒ Proclus Property

is a theorem in Neutral Geometry.

Proof. First assume that UPP holds. We must prove the Proclus Property, so suppose that
l ‖ m and that a third line t intersects m. Let P be the point of intersection. Our goal is
to show that t also intersects l. Suppose it didn’t, then t and m would both be parallel to l
and would both contain P , contradicting UPP.

Now assume the Proclus Property. We must prove UPP, so let l be a line and P a point
not on l. From IBC Geometry, there is at least one parallel m to l containing P . Suppose
m′ is another. Observe that m′ intersects m at P . So, by the Proclus Property, m′ must
also intersect l, a contradiction. Therefore, m is the unique parallel to l containing P . �

5. The Transitivity of Parallels Property

We now study one more property that is equivalent to UPP.

Definition 5 (TPP). The Transitivity of Parallels Property (TPP) is the following state-
ment: Let l,m, n be distinct lines. If l ‖ m and m ‖ n then l ‖ n.
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Proposition 4. In Neutral Geometry the Proclus Property and TPP are equivalent. In other
words,

Proclus Property ⇐⇒ TPP

is a theorem in Neutral Geometry.

Proof. First assume the Proclus Property. We wish to show TPP, so l,m, n be distinct lines
with l ‖ m and m ‖ n. Our goals is to show l ‖ n. Suppose otherwise, that l and n intersect.
Since l intersects n it must intersect m by the Proclus Property (because m ‖ n). Thus l is
not parallel to m, a contradiction.

Suppose TPP. We wish to show the Proclus Property, So let l,m, t be distinct lines such
that l ‖ m and such that t intersects m. We must show t intersects l. Suppose not, then
t ‖ l. By TPP, t ‖ m. This is a contradiction. �

Corollary 5. In Neutral Geometry UPP and TPP are equivalent. In other words,

UPP ⇐⇒ TPP

is a theorem in Neutral Geometry.

Proof. Combine the above proposition with Proposition 3. �

6. Euclidean Geometry

Euclidean Geometry consists of 5 undefined terms, 16 axioms, and anything that can be
defined or proved from these.

Primitive Terms. The five primitive terms are point, line, betweenness, segment congru-
ence, and angle congruence. We will adopt all the notation and definitions from Neutral
Geometry.

The Primitive Term Axiom for Euclidean Geometry is a preliminary axiom telling us what
type of objects all the primitive terms are supposed to represent. The Primitive Term Axiom
in Euclidean Geometry is exactly the same as for IBC geometry.

Axiom (Primitive Terms). The basic type of object is the point. Lines are sets of points.
Betweenness is a three place relation of points. If P,Q,R are points, then P ∗Q ∗R denotes
the statement that the betweenness relation holds for (P,Q,R). Segment congruence is a
two place relation of line segments, and angle congruence is a two place relation of angles.
If AB and CD are line segments, then AB ∼= CD denotes the statement that the segment
congruence relation holds between AB and CD. If α and β are angles, then α ∼= β denotes
the statement that the angle congruence relation holds between α and β.

The axioms of Euclidean Geometry include the above Primitive Term Axiom together
with the axioms I-1, I-2, I-3, B-1, B-2, B-3, B-4, C-1, C-2, C-3, C-4, C-5, C-6, Dedekind’s
Axiom, and the following Axiom.

Axiom (UPP). Given any line l and any point P not on l, there is a unique line containing
P that is parallel to l.

Since the axioms of Neutral Geometry are a subset of the axioms of Euclidean Geometry,
all the propositions of Neutral Geometry automatically hold in Euclidean Geometry.

The following can be called a meta-lemma since it is not really a result of Euclidean
Geometry, but a result about results in Euclidean Geometry.
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Lemma 6. Suppose X is a statement, and that UPP =⇒ X is a theorem of Neutral
Geometry, then X is a theorem of Euclidean Geometry.

Proof. In order to give a proof of X in Euclidean Geometry, first give the steps leading to
UPP =⇒ X. Since every proof in Neutral Geometry is automatically a proof in Euclidean
Geometry, these steps will be valid in Euclidean Geometry. Now assert UPP. This is valid in
Euclidean Geometry since UPP is an axiom. In your last step, use the logical rule of modus
ponens to conclude X. �

Corollary 7. The statements E5P, ConAIA, the Proclus Property, and TPP are theorems
of Euclidean Geometry.

Remark 2. We will see later that none of these are theorems of Neutral Geometry, and that
they are all false in Hyperbolic Geometry.

7. Euclidean Conditions

Definition 6 (Euclidean Condition). A Euclidean condition is a statement X such that

UPP ⇐⇒ X

is a theorem of Neutral Geometry.

Clearly UPP is a Euclidean Condition since UPP ⇐⇒ UPP is trivially a theorem.
We have seen also that E5P, ConAIA, the Proclus Property, and TPP are all Euclidean
conditions. Here is an important meta-proposition concerning Euclidean conditions.

Proposition 8. Every Euclidean condition is a theorem in Euclidean Geometry.

Proof. This follows from Lemma 6. �

We can prove something much stronger than the above. We can show that any Euclidean
condition can be used as the final axiom for Euclidean Geometry. In other words, if you do
not like UPP you can replace it with any other Euclidean condition:

Proposition 9. If X is an Euclidean condition and if we replace UPP as an axiom by X,
the resulting geometry will be equivalent to Euclidean Geometry. In other words, you can
prove exactly the same statements in both geometries.

Proof. Let EG be Euclidean Geometry, and let EG′ be the geometry you get when you
replace UPP by the Euclidean condition X.

First suppose S is a statement that can be proved in EG. Then UPP =⇒ S can be
proved in Neutral Geometry: just take the proof of S and replace every reference to the
axiom UPP with a reference to the hypothesis UPP. Now X ⇐⇒ UPP can be proved in
Neutral Geometry since X is a Euclidean Condition. Since UPP =⇒ S and X ⇐⇒ UPP
can be proved in Neutral Geometry, we can prove X =⇒ UPP in Neutral Geometry. This
means X =⇒ S can be proved in EG′ as well since EG′ has all the axioms of Neutral
Geometry. Now X can be trivially proved in EG′ since it is an axiom. Thus we can prove S
in EG′ (using modus ponens if necessary).

A similar argument shows that any statement that can be proved in EG′ can be proved
in EG. Thus both geometries prove the same statements. �

Remark 3. We conclude from this that E5P and UPP work equally well as an axiom. Euclid
chose to use E5P, but most modern textbooks use UPP instead.
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8. Theorems of Euclidean Geometry

We end with some propositions of Euclidean Geometry. Some of these will be seen to be
Euclidean conditions in later handouts. (Recall that any statement proved to be a Euclidean
condition, automatically becomes a theorem in Euclidean Geometry: for example, conAIA,
or TPP are theorems of Euclidean Geometry).

Proposition 10. If 4ABC is a triangle, then

|∠A|+ |∠B|+ |∠C| = 180.

Proof. Let m be the line containing A that is parallel to
←→
BC (exists by UPP). Let D and E

be points on m such that D∗A∗E (Axiom I-2, Axiom B-2). We can choose D and E so that
∠DAB and ∠B form alternating interior angles, ∠EAC and ∠C form alternating interior
angles, and C is interior to ∠EAB (using properties of Incidence-Betweenness Geometry1).

Since C is interior to ∠EAB, we have |∠EAB| = |∠EAC| + |∠A|. Since ∠DAB and
∠EAB are supplementary,

180 = |∠DAB|+ |∠EAB| = |∠DAB|+ |∠EAC|+ |∠A|.
By ConAIA, ∠DAB ∼= ∠B and ∠EAC ∼= ∠C. So

|∠DAB|+ |∠EAC|+ |∠A| = |∠B|+ |∠C|+ |∠A|.
The result follows. �

Proposition 11. Let A,B,C,D be four points such that (i) A,B,C are not collinear and D
is interior to ∠ABC, and (ii) A,D,C are not collinear and B is interior to ∠ADC. Then

|∠DAB|+ |∠ABC|+ |∠BCD|+ |∠CDA| = 360.

Remark 4. As we will see in the handout on quadrilaterals, the hypotheses of the above
theorem imply that �ABCD is a regular quadrilateral. The theorem says that the sum of
the angles of a regular quadrilateral is 360.

Proof. Let β = |∠ABC|, β1 = |∠ABD|, and β2 = |∠CBD|. By assumption (i),

β = β1 + β2.

By assumption (ii),
δ = δ1 + δ2

where δ = |∠ADC|, δ1 = |∠ADB|, and δ2 = |∠CDB|. Finally, let α = |∠DAB| and
γ = |∠BCD|. By Proposition 10, α + β1 + δ1 = 180 and γ + β2 + δ2 = 180. So

360 = (α + β1 + δ1) + (γ + β2 + δ2) = α + (β1 + β2) + γ + (δ1 + δ2) = α + β + γ + δ.

�

1Since D ∗A ∗E, the points D and E are on opposite sides of
←→
AC. Switching names if necessary, we can

assume D and B are on the same side, and E and B are on opposite sides of
←→
AC. In particular, ConAIA

applies to ∠EAC and ∠BCA.
Since m is parallel to

←→
BC, the points B and C are on the same side of

←→
AD. By definition of interior, we

have that B is interior to ∠DAC. By a result of Incidence-Betweenness Geometry, C is interior to ∠EAB.
Thus C and E are on the same side of

←→
AB. So C and D are on opposite sides of

←→
AB. In particular, ConAIA

applies to ∠DAB and ∠CBA.
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