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1. Introduction

In an earlier handout we considered various Euclidean Conditions. These include UPP
(Unique Parallel Property), E5P (Euclid’s Fifth Postulate) and many others. In this handout
we extend the list of Euclidean Conditions with other statements including those involving
defects and similar triangles. The discussion concludes with a list of important Euclidean
Conditions.

After considering Euclidean Conditions we consider Hyperbolic Geometry and various
conditions called Hyperbolic Conditions.

Recall that a Euclidean conditions C is any statement such that

UPP ⇐⇒ C

is a theorem of Neutral Geometry. All Euclidean Conditions are theorems of Euclidean
Geometry, and each is a legitimate replacement for UPP as the final axiom of Euclidean
Geometry.

Once Hyperbolic Geometry is accepted as consistent (through the use of models), no
Euclidean Condition can be hoped to be a theorem of Neutral Geometry. They can only
be theorems in Euclidean Geometry. In Neutral Geometry they are just statements that
happen to be equivalent to each other, each neither provably true nor provably false.

2. Al-Tusi’s Theorem

Consider the statement all triangles have defect zero (ZD:∀4). We wish to show that this
is a Euclidean Condition. An important step is giving a proof (in Neutral Geometry) of

ZD:∀4 =⇒ UPP.

A proof of this can be constructed by following the ideas of a medieval Persian mathemati-
cian, Nasir al-Din al-Tusi, who was himself very interested in questions related to Euclid’s
Fifth Postulate. In his honor we call this theorem Al-Tusi’s Theorem.

We begin with a few lemmas. All proofs will in the context of Neutral Geometry.

Lemma 1. Suppose that all triangles have defect zero. Then all regular quadrilaterals have
defect zero as well.

Proof. Let �ABCD be a regular quadrilateral. From the Quadrilateral Handout,

δABCD = δABC + δCDA.

The result follows. �
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Lemma 2. Suppose that every triangle has defect zero. Then when you double the hy-
pothenuse of a right triangle, the legs double as well. More precisely, suppose 4ABC is a
right triangle with right angle ∠B. Suppose A ∗B ∗B′ and A ∗C ∗C ′ are such that 4AB′C ′

is a right triangle with right angle ∠B′. If
∣∣AC ′

∣∣ = 2
∣∣AC∣∣, then

∣∣B′C ′
∣∣ = 2

∣∣BC∣∣ and∣∣AB′
∣∣ = 2

∣∣AB∣∣.
Proof. Drop a perpendicular from C ′ onto the line

←→
BC, and let D be the foot. Observe

that �B′BDC ′ is a parallelogram with three right angles.1 In other words, it is a Lambert
quadrilateral. By the above lemma, δB′BDC ′ = 0. This implies that all four angles are
right, so �B′BDC ′ is a rectangle. By a previous result (in the Quadrilateral Handout), this
implies that BD ∼= B′C ′ and B′B ∼= DC ′.

Now B ∗ C ∗D (details are skipped2). By the Vertical Angle Theorem, ∠BCA ∼= DCC ′.
Also, ∠ABC ∼= ∠C ′DC since they are both right, and AC ∼= C ′C by assumption. Thus
4ABC ∼= 4C ′DC by AAS.

In particular BC ∼= CD and AB ∼= C ′D. The first of these tells us that
∣∣BD∣∣ = 2

∣∣BC∣∣.
However,

∣∣BD∣∣ =
∣∣B′C ′

∣∣, so
∣∣B′C ′

∣∣ = 2
∣∣BC∣∣.

Since AB ∼= C ′D, and since B′B ∼= C ′D, we get AB ∼= B′B. Thus
∣∣AB′

∣∣ = 2
∣∣AB∣∣. �

Remark 1. What happens if you remove the assumption that all triangles have defect zero?
Then all you know is that �B′BDC ′ is a Lambert quadrilateral with a possibly acute angle
at C ′. Thus

∣∣DC ′
∣∣ ≥ ∣∣BB′

∣∣ and
∣∣B′C ′

∣∣ ≥ ∣∣BD∣∣. So the above proof only gives us that∣∣B′C ′
∣∣ ≥ 2

∣∣BC∣∣ and
∣∣AB′

∣∣ ≤ 2
∣∣AB∣∣.

Here is the main theorem:

Theorem 1 (Al-Tusi’s Theorem). Suppose that all triangles have defect zero. Then the
following holds: given a line l and a point P not on l, there is exactly one line passing
through P parallel to l. In other words,

ZD:∀4 =⇒ UPP.

Proof. Drop a perpendicular from P to l, and let Q be the foot. Thus l ⊥
←→
PQ. Now let m1

be a line perpendicular to
←→
PQ that contains P . By an earlier result, such a line exists, and

by another result l ‖ m1 since l and m1 are both perpendicular to the same line
←→
PQ.

We must show that there are no other lines parallel to l containing P . To do so, suppose
that m2 is another such line. Choose a point C on m2 that is on the same side of m1 as Q.

Drop a perpendicular from C to
←→
PQ, and call the foot B. So 4PBC is a right triangle with

right angle at B.3

Now let C1 be a point such that P ∗C∗C1 and CC1
∼= PC. In other words,

∣∣PC1

∣∣ = 2
∣∣PC∣∣.

Drop a perpendicular from C1 to
←→
PQ, and call the foot B1. So 4PB1C1 is a right triangle

1This requires the routine verification of several conditions: the four points are distinct, the opposite sides
are parallel.

2First show the three points are distinct. Next observe that C and C ′ are on the same side of
←→
AB and C ′

and D are on the same side of
←→
AB, so C and D are on the same side of

←→
AB. Similarly, B and C are on the

same side of
←−→
DC ′. The result follows.

3Also,
←→
BC is parallel to m1, so B and C are on the same side of m1. Thus B and Q are on the same side

of m1. So B is on the ray
−−→
PQ.
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with right angle at B1. Now P and C1 are on opposite sides of
←→
BC, and

←→
BC ‖

←−→
B1C1. It

follows that P and B1 are on opposite sides of
←→
BC. Thus P ∗B∗B1. So we can use Lemma 2.

We conclude that
∣∣PB1

∣∣ = 2
∣∣PB∣∣.

By repeating this processes, we produce sequences C1, C2, . . . and B1, B2, . . . such that∣∣PBk

∣∣ = 2k
∣∣PB∣∣. Furthermore, each Ci is on m2 and each Bk is on the ray

−→
PQ. For

sufficiently large k, we have
∣∣PBk

∣∣ > ∣∣PQ∣∣ by the Archimedean Principle. This implies that

P ∗Q ∗Bk, so P and Bk are on opposite sides of l. Since
←−→
BkCk ‖ l, we have Bk ∼l Ck. So P

and Ck are also on opposite sides of l. Thus l intersects PCk. This means that m2 =
←−→
PCk

and l are not parallel: a contradiction. �

3. Euclidean Conditions Related to Defect

From Al-Tusi’s Theorem we get the following.

Proposition 3. The statement ZD:∀4 is a Euclidean Condition.

Proof. We must show that ZD:∀4 ⇐⇒ UPP. One direction follows from Al-Tusi’s Theo-
rem. The other follows from that fact that ZD:∀4 is a theorem in Euclidean Geometry, so
can be proved to follow from UPP in Neutral Geometry. �

In the Legendre’s Defect Zero Theorem Handout saw that several statements were equiv-
alent to ZD:∀4 in Neutral Geometry. Since ZD:∀4 is a Euclidean Condition, the rest are
as well. The following list two such conditions:

Corollary 4. The statement “a rectangle exist” (Rect) is a Euclidean Condition.

Corollary 5. The statement “a triangle of defect zero exists” (ZD:∃4) is a Euclidean Con-
dition.

4. Similar Triangles

There is an important Euclidean Conditions related to similar triangles.

Definition 1 (Similar Triangles). If 4ABC and 4DEF are triangles such that ∠A ∼= ∠D,
∠B ∼= ∠E, and ∠C ∼= ∠F , then we write 4ABC ∼ 4DEF , and say that the triangles are
similar.

Wallis proposed the following hypothesis (WallisHyp) as a postulate for geometry:

If 4ABC is a triangle, and x is a positive real number, then there is a triangle
4DEF such that

∣∣DE∣∣ = x and 4ABC ∼ 4DEF .

We will establish that WallisHyp is a Euclidean Condition. So we could follow Wallis’ advice
and use this statment as the final axiom of Euclidean Geometry if we wanted. To do this,
we need the following lemma.

Lemma 6. Suppose 4ABC ∼ 4DEF but 4ABC 6∼= 4DEF . Then there exists triangle of
defect zero.

Proof. If AB ∼= DE then by SAS, 4ABC ∼= 4DEF , contradicting our supposition. So we
an assume, without loss of generality, that AB < DE.

3



Let X be a point on
−→
AB such that AX ∼= DE, and let Y be a point on

−→
AC such that

AY ∼= DF (Axiom C-2). By assumption ∠A ∼= ∠D so, by SAS, 4AXY ∼= 4DEF . Observe
that ∠ABC ∼= ∠DEF ∼= ∠AXY .

Since AB < DE we have A ∗ B ∗ X. Note that
←→
BX is a transversal for

←→
BC and

←→
XY .

Since corresponding angles ∠ABC and ∠AXY are congruent, the alternating interior angles
must also be congruent (by the Vertical Angle Theorem). By the Alternating Interior Angle

Theorem of Neutral Geometry,
←→
XY is parallel to

←→
BC. Thus X and Y are on the same side

of
←→
BC. This implies that A and Y are on opposite sides of

←→
BC. Thus A ∗ C ∗ Y .

By the additivity of defects

δAXY = δAXC + δXCY = δABC + δBCX + δXCY.

But δAXY = δABC since δAXY = δDEF (congruent) and δDEF = δABC (similar).
Subtracting gives 0 = δBCX + δXCY . So δBCX = δXCY = 0. �

Proposition 7. WallisHyp is a Euclidean Condition.

Proof. First suppose that WallisHyp holds. Let 4ABC be any fixed triangle, and let x be
a real number larger than the lengths of the sides of 4ABC. Applying WallisHyp with
this triangle and x gives a triangle similar to, but not congruent to, 4ABC. By the above
lemma, there are triangles of defect zero. So ZD:∃4 holds. Since ZD:∃4 is equivalent to
UPP (Corollary 5), we have UPP as well.

Conversely, suppose UPP holds. Let 4ABC be given, and let x be a positive real number.
Our goal is to construct a similar triangle 4DEF such that

∣∣DE∣∣ = x. To do so, let DE

be a segment such that
∣∣DE∣∣ = x. Such a DE exists by the Segment Measure Theorem

(Neutral Geometry Handout). Let
−−→
DX be a ray such that ∠XDE ∼= ∠A. Let

−−→
EY be a ray

such that ∠DEY ∼= ∠B. Also, choose X and Y on the same side of
←→
DE. Such a X and Y

exist by Axiom C-5.
To complete the proof, we can use any established Euclidean Condition (since they are

equivalent to UPP). We know |∠A| + |∠B| < 180 by a result of Neutral Geometry. Thus
−−→
DX and

−−→
EY must intersect at a point F by E5P (we can use E5P since it is a Euclidean

Condition). Note that δABC = δDEF = 0 by Proposition 3. Since ∠A ∼= ∠D, and
∠B ∼= ∠E, it follows that ∠C ∼= ∠F . Thus 4ABC ∼ 4DEF . �

5. Equidistant Lines

Here is another important Euclidean Condition:

If l and m are parallel, then every point of m is equidistant from l. (EqD)

Actually, you only need to show three points are equidistant to prove UPP. Here is the
definition of distance from a point to a line:

Definition 2. Let P be a point not on the line l. Let m be the unique line perpendicular
to l containing P . Let Q be the foot (the intersection of l and m). Then the distance from
P to l is defined to be

∣∣PQ∣∣.
Remark 2. Let P,Q, l be as above. If X is another other point on l then PA < PX, so Q is
actually is the closest point on l to P . To see this, consider the right triangle 4PQX and
observe that ∠Q < ∠A.
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Proposition 8. if l and m are parallel, and three distinct points P,Q,R on m have the same
distance from l, then rectangles exist.

Proof. Without loss of generality, we can suppose that P ∗Q∗R. Drop a perpendicular from
P to l, and let A be the foot. Drop a perpendicular from Q to l, and let B be the foot.
Drop a perpendicular from R to l, and let C be the foot. Now A,B,C must be distinct
(since perpendiculars through a given point are unique, and two distinct lines intersect m in
at most one point).

By hypothesis PA ∼= QB ∼= RC. So �PABQ is a Saccheri quadrilateral. By an earlier
result (from the Quadrilateral Handout), |∠APQ| = |∠BQP | ≤ 90. Also, �QBCR is a
Saccheri quadrilateral. So |∠BQR| = |∠CRQ| ≤ 90. But ∠BQP and ∠BQR are supple-
mentary. Since neither is obtuse, they must both be right. So |∠APQ| = |∠BQP | = 90.
Thus �PABQ is a Rectangle. �

Proposition 9. EqD is a Euclidean Condition.

Proof. If EqD holds, then Rect holds by the above proposition. But Rect is equivalent to
UPP by Corollary 4. So UPP holds.

Conversely, if UPP holds then let A and B be two points on m where l ‖ m. Drop
perpendiculars from A and B to l, and let F and G be the respective feet. Thus ∠F and

∠G are right. Now if we draw a perpendicular to
←→
AF containing A, we get a parallel to l by

a theorem of Neutral Geometry. By our uniqueness assumption, that line must be m. Thus
∠A is right. A similar argument shows ∠B is right. Thus �ABGF is a rectangle. So, by a
previous result, AF ∼= BG. Since A and B were arbitrary points on m, we conclude that all
points on m have the same distance to l. �

6. Areas of Triangles

We have not defined area in this course, so we cannot prove theorems concerning area. It
turns out, however, that in Hyperbolic Geometry area is proportional to defect. Since defect
is bounded by 180, we conclude that areas of triangles too must be bounded in Hyperbolic
Geometry. Because of this, the following turns can be shown to be a Euclidean Condition.

There are triangles of arbitrarily large area. In other words, given a positive
real number x, one can find a triangle of area at least x. (Big4)

Remark 3. The modern definition of area and volume are part of a branch of mathematics
called measure theory.

7. Legendre’s Crossbar Hypothesis

One of Legendre’s proofs of the Euclidean Parallel Postulate uses the following.4

If D is an interior point in the angle ∠BAC , then there is a line passing

through D that intersects both rays,
−→
AB and

−→
AC, of the angle. (CrossbarHyp)

Proposition 10. CrossbarHyp is a Euclidean Condition.

4Another of his proof uses the assumption that if D is interior to an angle ∠BAC, then every line
containing D must intersect the angle. This gives yet another Euclidean Condition. See Greenberg for more
details.
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Roughly speaking Legendre proved UPP as follows. Given 4ABC, one forms a triangle
that contains two congruent copies of 4ABC (using CrossbarHyp). By repeating this pro-
cess, one gets unbounded area. Since Big4 is a Euclidean Condition, one gets UPP as well.
See Greenberg for the details.

8. Other ECs

The following was proposed as an axiom by Farkas Bolyai.

If P,Q,R are three non-collinear points, then there is a circle containing P,Q,
and R. (3ptCircle)

The following assumption was made by al-Tusi.

Suppose that A,B,C are three points on the same side of a line l such that

A ∗ B ∗ C. Let D,F,G be points on l such that
←→
AD,

←→
BF , and

←→
CG are each

perpendicular to l. If ∠ABF is acute then AD < BF < CG. (AlTusiHyp)

Proposition 11. 3ptCircle and AlTusiHyp are Euclidean Conditions.

We skip the proof.

9. List of Euclidean Conditions

Here is a list of Euclidean Conditions in one place for convenient reference.

(1) UPP. Unique Parallel Property.
(2) E5P. Euclid’s Fifth Postulate.
(3) ConAIA. The converse to the Alternating Interior Angle Theorem.
(4) Proclus. The Proclus Property concerning lines intersecting parallels.
(5) TPP. Transitivity of Parallel Property.
(6) (ZD:∀4). All triangle have zero defect.
(7) Rect. Rectangles exist. All triangle have zero defect.
(8) (ZD:∃4). Triangles with zero defect exist.
(9) WallisHyp. Similar triangles exist of arbitrary size.

(10) EqD. Equal distances for points on a parallel line.
(11) Big4. Triangles of arbitrarily large areas exist.
(12) CrossbarHyp. Crossbars exist through arbitrary points.
(13) 3ptCircle. A circle exists containing three given non-collinear points.
(14) AlTusiHyp. Al-Tusi Hypothesis (for decreasing length segments).

10. Hyperbolic Geometry

Hyperbolic Geometry consists of 5 undefined terms, 16 axioms, and anything that can be
defined or proved from these.

Primitive Terms. The five primitive terms are point, line, betweenness, segment congru-
ence, and angle congruence. We will adopt all the notation and definitions from Neutral
Geometry.

The Primitive Term Axiom for Hyperbolic Geometry is a preliminary axiom telling us
what type of objects all the primitive terms are supposed to represent. The Primitive Term
Axiom in Hyperbolic Geometry is exactly the same as for IBC Geometry.
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Axiom (Primitive Terms). The basic type of object is the point. Lines are sets of points.
Betweenness is a three place relation of points. If P,Q,R are points, then P ∗Q ∗R denotes
the statement that the betweenness relation holds for (P,Q,R). Segment congruence is a
two place relation of line segments, and angle congruence is a two place relation of angles.
If AB and CD are line segments, then AB ∼= CD denotes the statement that the segment
congruence relation holds between AB and CD. If α and β are angles, then α ∼= β denotes
the statement that the angle congruence relation holds between α and β.

The axioms of Hyperbolic Geometry include the above Primitive Term Axiom together
with the axioms I-1, I-2, I-3, B-1, B-2, B-3, B-4, C-1, C-2, C-3, C-4, C-5, C-6, Dedekind’s
Axiom, and the following Axiom.

Axiom (¬UPP). There is a line l, a point P not on l, and two lines m1 and m2 containing
P such that l ‖ m1 and l ‖ m2.

Remark 4. This axiom is called ¬UPP since it is essentially the negation of UPP. To see
this, recall that in Neutral Geometry given P 6∈ l there is at least one parallel m to l
containing P . So UPP essentially says that for all l and P 6∈ l there is at most one such
parallel. The negation of this is that there is an l and P 6∈ l with more than one such parallel.
Note the change in quantifiers from ∀ to ∃.

Remark 5. Since the axioms of Neutral Geometry are a subset of the axioms of Hyperbolic
Geometry, all the propositions of Neutral Geometry automatically hold in Hyperbolic Ge-
ometry. Thus every proposition of Neutral Geometry is a common proposition for Euclidean
Geometry and Hyperbolic Geometry.

Here is are two meta-propositions concerning the two types of propositions of Hyperbolic
Geometry.

Proposition 12. Every proposition of Neutral Geometry is a proposition of Hyperbolic Ge-
ometry.

Proof. See the above remark. �

Proposition 13. The negation of any Euclidean Condition is a proposition of Hyperbolic
Geometry.

Proof. Let C be a Euclidean Condition. By definition C ⇐⇒ UPP is provable in Neutral
Geometry. Thus the contrapositive ¬UPP ⇐⇒ ¬C is provable in Neutral Geometry.
By the previous proposition, ¬UPP ⇐⇒ ¬C is provable in Hyperbolic Geometry. Since
¬UPP is an axiom, we can prove ¬C in Hyperbolic Geometry �

For example, the existence of a triangle of defect zero is a Euclidean Condition, thus the
negation is a proposition of Hyperbolic Geometry. Since all triangles have non-negative
defect in Neutral Geometry, we get the following:

Proposition 14. The defect of any triangle is postive. So the angle sum of any triangle is
strictly less than 180.
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11. The Hyperbolic Parallel Property (HPP)

From ¬UPP, which applies to only one P and l, we can actually prove something much
stronger.

Definition 3 (HPP). The Hyperbolic Parallel Property (HPP) is the following statement:

For all lines l and points P 6∈ l there are at least two lines parallel to l that
contain P .

Proposition 15. The statement

¬UPP ⇐⇒ HPP

is provable in Neutral Geometry.

Proof. Proving HPP from ¬UPP is easy, so we focus on proving HPP from ¬ UPP. Since
we assume ¬ UPP we get all the propositions of Hyperbolic Geometry. In particular, all
triangles have positive defect.

Let l be a line, and P 6∈ l. Our goal is to find two parallel to l containing P . Drop

a perpendicular from P to l, and let Q be the foot. Thus l ⊥
←→
PQ. Now let m1 be a line

perpendicular to
←→
PQ that contains P . By an earlier result, such a line exists, and by another

result l ‖ m1 since l and m1 are both perpendicular to the same line
←→
PQ.

We must find another, distinct parallel. Let R be a point of l not equal to Q. Let
α = |∠QPR|+ |∠QRP |. Since δPQR > 0, we have α < 90.

By the Angle Measure Theorem, there is a ray
−→
PA such that ∠QPA has measure α, and

such that A and R are on the same side of
←→
PQ. Let m2 =

←→
AP . Since ∠QPA is not right,

we know that m1 and m2 are distinct lines containing P .
Now |∠QPA| = |∠QPR|+ |∠QRP | by definition of α, and |∠QPA| = |∠QPR|+ |∠RPA|

since
−→
PR is interior to ∠QPA. Thus |∠RPA| = |∠QRP |. By the Alternating Interior Angle

Theorem, m2 ‖ l. So m1 and m2 are distinct parallels.5 �

Corollary 16. HPP holds in Hyperbolic Geometry

12. Hyperbolic Conditions

Definition 4 (Hyperbolic Condition). A Hyperbolic Condition is a statement that is prov-
ably equivalent, in Neutral Geometry, to ¬UPP. In other words, it is a statement C such
that

C ⇐⇒ ¬UPP

is provable in Neutral Geometry.

Proposition 17. ¬UPP and HPP are each Hyperbolic Conditions.

Proof. Since ¬UPP ⇐⇒ ¬UPP is trivially provable, we have that ¬UPP is a Hyperbolic
Condition. By Proposition 15, HPP is also a Hyperbolic Condition. �

5This proof uses the following:
−→
PR is interior to ∠QPA, and A and Q are on opposite sides of

←→
PR. The

first follows from α > |∠QPR|. The second is a consequence of the first: since since R is interior to ∠QPA,
the ray

−→
PR intersects AQ by the crossbar theorem, showing that A and Q are on opposite sides of

←→
PR.
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Every Hyperbolic Condition is in fact a theorem of Hyperbolic Geometry. In fact, each
Hyperbolic Condition can be used as the final axiom of Hyperbolic Geometry.

Proposition 18. Every HC is a proposition of Hyperbolic Geometry. Furthermore, if C is
an Hyperbolic Condition, and we replace ¬UPP as an axiom by C, the resulting geometry
will be equivalent to Hyperbolic Geometry. In other words, the two geometries will have the
same propositions.

Proof. Follows from the definition of Hyperbolic Condition and Hyperbolic Geometry. �

Our earlier study of Euclidean Conditions was also a study of Hyperbolic Conditions due
to the following:

Proposition 19. A statement is a Hyperbolic Condition if and only if its negation is a
Euclidean Condition.

Proof. ¬UPP ⇐⇒ C is equivalent to its contrapositive UPP ⇐⇒ ¬C. The first defines a
Hyperbolic Condition, the second defines a Euclidean Condition (for ¬C). �

The above proposition gives us many Hyperbolic Conditions: just negate the Euclidean
Conditions discussed above. Examples: no rectangles exist,there are lines l1, l2, l3 such that
l1 ‖ l2 and l2 ‖ l3 but l1 and l3 intersect, there are points on a parallel line of different
distances from a given line, etc.

An interesting Hyperbolic Condition is the following:

Definition 5 (AAA). The Angle-Angle-Angle property (AAA) is the following statement:
Similar triangles are congruent.

Proposition 20. AAA is a Hyperbolic Condition. Hence it is a theorem of Hyperbolic
Geometry.

Proof. First assume ¬UPP, so we can use theorems from Hyperbolic Geometry. Suppose
4ABC ∼ 4DEF , but 4ABC 6∼= 4DEF . By Lemma 6 there exists triangles of defect
zero. But in Hyperbolic Geometry all triangles have positive defect, a contradiction. So
similar triangles must be congruence.

Now suppose AAA. Then Wallis’ Hypothesis (WallisHyp) must be false: otherwise we
could take x larger than any side of the given triangle 4ABC and derive a contradiction
to AAA. Thus the negation of Wallis’ Hypothesis holds. The negation of any Euclidean
Condition is a Hyperbolic Condition, and every Hyperbolic Condition implies ¬UPP. So
¬UPP holds. �

Here is a list of some of the more interesting Hyperbolic Conditions:

(1) ¬UPP concerning one line l, one point P 6∈ l, and two parallels.
(2) HPP. Hyperbolic Parallel Property: a property of all l and P 6∈ l.
(3) AAA. Similar triangles are congruent.
(4) There are parallel lines, and a third line that only intersects one of the two parallels

(negation of Proclus).
(5) There are distinct lines l1 ‖ l2 and l2 ‖ l3 such that l1 and l3 intersect. (negation of

TPP)
(6) There is a triangle of non-zero defect (negation of (ZD:∀4)).
(7) Rectangles do not exist (negation of Rect).
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(8) All triangles have positive defect (negation of (ZD:∃4)).
(9) If l ‖ m, then there are points A and B on m whose distances to l differ (negation of

EqD).
(10) There is a bound on the areas of triangles (negation of Big4).
(11) There is an angle and a point P in the interior of the angle such that there are no

crossbars going through P . (negation of the CrossbarHyp)

All the above conditions hold in Hyperbolic Geometry, but fail in Euclidean Geometry.
They truly illustrates that Hyperbolic Geometry is, in the words of János Bolyai, a “strange
new universe”!

13. Appendix: Historical comments

Nasir al-Din al-Tusi (1201–1274) (or Nasir Eddin al Tusi or Nasiraddin Tusi) was a me-
dieval Persian mathematician who was famous for his work in mathematics, astronomy,
philosophy, and logic. In mathematics he is known for his innovations in planar and spher-
ical trigonometry. Some consider him to be the best astronomer between Ptolomy and
Copernicus.

He was very familiar with Greek mathematics. In fact, he wrote several commentaries
concerning important Greek mathematicians. Like other geometers, he was not content to
accept Euclid’s Fifth Postulate as an axiom, but wished to prove it instead. In doing so he
made an assumption concerning distances: suppose m and l are lines such that a transversal
t is perpendicular to l but not to m. Roughly speaking he assumed that on the side of the
acute angle, points of m get closer to l and on the obtuse side they get farther away. From
this assumption he was actually able to prove that the points do not just get closer on the
side of the acute angle, but they actually intersect. This gives, without too much trouble,
the Euclidean Fifth Postulate. His work made use of Saccheri quadrilaterals long before
Saccheri was born.6 Here is a slight restatement of his assumption.

Hypothesis (Al-Tusi). Suppose that A,B,C are three collinear points all on the same side

of a line l such that A ∗ B ∗ C. Let D,F,G be points on l such that
←→
AD,

←→
BF , and

←→
CG are

each perpendicular to l. If ∠ABF is acute then AD < BF < CG.

From this al-Tusi proved the following:

Proposition 21. If the above hypothesis holds then every Saccheri quadrilateral is a rectan-
gle, so rectangles exist.

Proof. Let �ABCD be a Saccheri quadrilateral with ∠B and ∠C right angle, and with
AB ∼= CD. Then we know from the Quadrilateral Handout that the summit angles ∠A and
∠D are congruent. Let X be such that X ∗A ∗D and such that X,A,D are all on the same

side of
←→
BC. Drop a perpendicular from X to

←→
BC, and let Y be the foot.

If ∠BAD is acute then by the above hypothesis DC < AB < XY . But this contradicts
the assumption that AB ∼= CD. Thus ∠BAD is not acute. If ∠BAD is obtuse, then
∠XAB is acute. So, by the above hypothesis, XY < AB < DC. But this also contradicts

6He wasn’t the first. For example, the famous Persian Poet and Scientist Omar Khayyam used them
earlier. But al-Tusi used them to great effect.
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the assumption that AB ∼= CD. Therefore ∠BAD is a right angle. Similarly, ∠ADC is
right. So �ABCD is a rectangle.

Thus every Saccheri quadrilateral is a rectangle. But you can form Saccheri quadrilaterals
�ABCD with sides AB and BC of any length you want. Also 4ABC is right. Since
δABCD = 0, it follows that δABC = 0. Thus all right triangles have defect zero. Then, as
in the handout on Lagendre’s Defect Zero Theorem, every triangle must have defect zero.

This shows all Saccheri quadrilateral is a rectangle. Since Saccheri quadrilaterals exist (in
Neutral Geometry), so do rectangles. �

14. Appendix: Aristotle’s Hypothesis

Aristotle assumed that the distance between two rays of an acute angle tends to infinity
as you go out along a ray. This turns out to be true and provable in both Euclidean and
Hyperbolic Geometry. In fact, it is a theorem of Neutral Geometry. Apparently, Sacchari
was the first to prove this hypothesis of Aristotle in Neutral Geometry (it is easy to prove
in Euclidean Geometry; the challenge is to prove it without the parallel postulate).

Proposition 22 (Aristotle’s Hypothesis). Let ∠CAD be an acute angle. For every num-

ber M , we can find a point C ′ of
−→
AC such that the distance from C ′ to the line

←→
AD is greater

than M .

Proof. Drop a perpendicular from C to the line
←→
AD. Let B be the foot. So 4ABC is a right

triangle with right angle ∠B. Now let C1 be a point such that A ∗ C ∗ C1 and CC1
∼= AC.

Drop a perpendicular from C1 to the line
←→
AD. Let B1 be the foot. So 4AB1C1 is a right

triangle with right angle ∠B1.
Observe that

∣∣AC1

∣∣ = 2
∣∣AC∣∣. If we are in Euclidean Geometry, then we have defect zero

for all triangles and so, by Lemma 2,
∣∣B1C1

∣∣ = 2
∣∣BC∣∣. Now since

∣∣B1C1

∣∣ is the distance

from C1 to
←→
AD, we have shown how to double the distance. What if we are not in Euclidean

Geometry? In this case, the remark after Lemma 2 shows us that, because of the properties
of Lambert quadrilateral, we have

∣∣B1C1

∣∣ > 2
∣∣BC∣∣. So we do even better: we more than

double the distance.7

By repeating this process we get a sequence C1, C2, C3, . . .. Each term doubles, or more

than doubles, the distance to
←→
AD. So eventually the distance will be larger than any given M .

�

7In Elliptic Geometry or Spherical Geometry, this does not happen.
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