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1. Introduction

We begin our exploration of number systems with the most basic number
system: the natural numbers N. Informally, natural numbers are just the or-
dinary whole numbers 0, 1, 2, . . . starting with 0 and continuing indefinitely.1

For a formal description, see the axiom system presented in the next section.
Throughout your life you have acquired a substantial amount of knowl-

edge about these numbers, but do you know the reasons behind your knowl-
edge? Why is addition commutative? Why is multiplication associative?
Why does the distributive law hold? Why is it that when you count a finite
set you get the same answer regardless of the order in which you count the
elements? In this and following chapters we will systematically prove basic
facts about the natural numbers in an effort to answer these kinds of ques-
tions. Sometimes we will encounter more than one answer, each yielding
its own insights. You might see an informal explanation and then a for-
mal explanation, or perhaps you will see more than one formal explanation.
For instance, there will be a proof for the commutative law of addition in
Chapter 1 using induction, and then a more insightful proof in Chapter 3
involving the counting of finite sets.

We will use the axiomatic method where we start with a few axioms
and build up the theory of the number systems by proving that each new
result follows from earlier results. In the first few chapters of these notes
there will be a strong temptation to use unproved facts about arithmetic
and numbers that are so familiar to us that they are practically part of our
mental DNA. Resist this temptation! In the context of a formal proof, take
the attitude that such familiar facts are not certain until they are proved.
So they cannot be used in a formal proof until after they have been proved.
A similar thing can be said of definitions: pretend that your intuitive ideas
of even basic things such as + and < are inaccessible until you can have
a formal definition. In the beginning, the only terms that can be used are

Copyright c©2007–2019 by Wayne Aitken and Linda Holt. The copyright holders au-
thorize individuals to make a single paper copy of this edition for personal, noncomercial
use.

1Warning: some authors do not include 0 in the set of natural numbers. This will be
discussed in the next section.
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terms from logic and set theory, explained in Chapter 0, and the primitive
terms. The only facts that can be used are the axioms together with facts
from logic and set theory as summarized in Chapter 0, including general
facts about equality, functions, and relations.2

The system of axioms we use here is a famous system called the Dedekind-
Peano axioms (Section 2), or the Peano axioms for short. We will add
to this an axiom about iterating functions (Section 3), but in an optional
section (Section 9) to this chapter, we will see that this iteration axiom is
not necessary since it can actually be proved from Peano’s axioms. Thus
it is strictly speaking a convenient “temporary” axiom: one could replace
the iteration axiom by a theorem that says the same thing. We take it as a
temporary axiom in these notes since the proof of the iteration axiom is a
bit subtle, and is at a higher level than most of the other theorems of the
chapter. I do not want to start off the chapter by scaring away readers.

Remark 1. Although we will be strict about not using unproved assertions in
the formal development, you do not need to be so shy about using your prior
knowledge in the informal exercises. Such prior knowledge is also useful for
temporarily guiding your thinking until a firmer foundation is laid down in
the formal development.

This distinction between formal and informal is especially important in
the many exercises that will arise in these notes. The informal exercises will
be labeled as such. The rest are considered to be formal exercises.

The formal exercises may require you to fill in details of sketchy proofs
or even to write complete proofs for theorems whose proofs are not too
hard or are similar to earlier proofs. These constitute part of the official
development of the number systems, and the facts established in them can
be used in future proofs. On the other hand, the informal exercises are
designed to help familiarize you with facts or definitions, or to lead you in
interesting but tangential directions. These do not have to be solved with
a formal proof, and can appeal to prior knowledge. They are considered to
be outside the logical development of the number systems, and so cannot be
cited in a later formal proof.

For example, suppose an informal exercise asks for an example of an
associative binary operation that is not commutative. Suppose you know
about matrix multiplication from a linear algebra course. Then you can
use your knowledge of linear algebra to help solve the problem. On the
other hand, you cannot use matrix multiplication in a formal exercise since
matrices are not developed in this course.

2In these notes, we start almost at the very beginning of mathematics, but you should be
aware that there are other approaches that start with less and begin by proving theorems
about set theory first before developing the number systems. For example, set theorists
typically start with the Zermelo-Fraenkel axioms for set theory, and from there develop
set theory, the number systems, and (most of) the rest of mathematics.
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Remark 2. In the above discussion, the term theorem refers to any result
that has a proof. Keep in mind that other terms for theorems are commonly
used including proposition, lemma, and corollary. The term lemma is used
for a theorem that is only important as a stepping stone in proving other
theorems, and a corollary is a theorem that follows fairly easily, for example
as an interesting special case, from a previous theorem. Some authors also
make a distinction between the terms theorem and proposition, using the
label proposition for more ordinary theorems and using theorem only for
the more important theorems. These are informal guidelines: one can find
exceptions.

Remark 3. As mentioned above, in the formal development of the natural
numbers we begin by assuming that everything about the natural numbers
is as yet unknown territory. On the other hand, we do allow logic as ex-
pressed in everyday, but careful, language. This leads to a point that needs
to be clarified: even though we are developing the natural numbers from
scratch, we will allow ourselves to use a few number-related terms such as
“pair”, “unique”, “first”, “second”, and so on. We do so because we can
safely treat such basic terms as forming part of our logical vocabulary.3 We
will also use numerals for the labeling of sections, theorems, exercises, and
such. These labels have no arithmetic content, and could have just as easily
been any string of symbols. They are being used informally to help keep the
chapter organized. On the other hand, we will not take any truly mathe-
matical or arithmetic fact for granted, for example facts about addition and
multiplication. These all must be proved.

2. The axioms

Forget everything you think you know about the natural numbers, even
something as basic as 1+1 = 2. Pretend you don’t even know the definition
of addition. In what follows, we will recreate all this knowledge on a solid
logical foundation by proving all the elementary theorems and definining all
the basic ideas. (Of course this self-imposed forgetting should be confined
to the official formal development of the natural numbers, and the formal
proofs. Your past knowledge will come in handy for thinking up strategies
for proofs, for helping you mentally digest definitions, and for warning you
when you are about to make an error.)

At this point, the only thing that you are officially allowed to know con-
cerning the natural numbers is what is expressed in the following axioms.
They function partially as descriptions of the primitive terms, and partially
as a list of facts that we can use in later proofs. These axioms are called

3For example, the statement “the set S has at least two elements” does not really
require the number 2. It can be translated easily into basic logic as follows:

∃x∃y
(

(x ∈ S) ∧ (y ∈ S) ∧ (x 6= y)
)
.
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the Dedekind-Peano axioms since they are based on the axioms of the Ger-
man mathematician Richard Dedekind (1831 – 1916) and the the Italian
mathematician Giuseppe Peano (1858 – 1932).4

We begin with the primitive terms described in the axioms. They are
called primitive because they do not have to be formally defined, but instead
are described in the axioms. All other terms, such as + or < must be defined.
Such definitions can build on primitive terms, notions from Chapter 0, or
any previously defined term.

Primitive Terms. The three primitive terms are N, 0, and σ.

The axioms then tell you everything you are allowed to assume about the
meaning of these terms. For example, the first axiom tells you broadly what
type of object these terms denote.

Axiom 1. (i) N is a set, (ii) 0 is an element of N, and (iii) σ is a function

σ : N→ N

with domain and codomain equal to N.

We call N the “set of natural numbers”, and we call its elements “natural
numbers”. We call 0 the “zero element”, or just “zero”. We call σ the
“successor function”. If n ∈ N we call σn the “successor of n.” Informally,
the successor of n is the next number following n. This is informal since we
have not yet defined an order < on N.

Axiom 2. The image of σ : N→ N does not contain 0:

¬
(
∃ n ∈ N, σn = 0

)
.

In other words, 0 is not the successor of a natural number.

Axiom 3. The function σ : N → N is injective.5 In other words, distinct
natural numbers have distinct successors.

∀ x, y ∈ N, x 6= y =⇒ σx 6= σy

or equivalently

∀ x, y ∈ N, σx = σy =⇒ x = y.

4There are several variations of these axioms. We use a version of what is sometimes
called the second-order Peano axioms which allows the notion of subsets of N. There
is another, more elementary system called the first-order Peano axioms which does not
quantify over sets of natural numbers. If you encounter the Peano axioms outside these
notes, you might see the first order version with axioms that refer directly to addition and
multiplication. In our second-order version the operations of addition and multiplication
are not mentioned in the axioms, but must be defined in terms of the successor function.

5The reader is expected to be familiar with the term injective, or the equivalent
term one-to-one. These terms describe functions f that map distinct elements to dis-
tinct images.
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Axiom 4 (Induction). Suppose S is a subset of N such that (i) 0 ∈ S, and
(ii) n ∈ S implies σn ∈ S for arbitrary n ∈ N. Then S = N.

S ⊆ N ∧ 0 ∈ S ∧
(
∀n (n ∈ S ⇒ σn ∈ S)

)
=⇒ S = N

Informal Exercise 1. Go through the axioms one by one, and convince
yourself that they do indeed hold for your conception of the natural numbers

0, 1, 2, 3, . . . .

Informally think of σn as the next number after n, or as n + 1. Since the
exercise is informal, you may appeal to your earlier knowledge of arithmetic,
knowledge of which will be formally proved later in the course. If it helps
to justify the Induction Axiom (Axiom 4), think about why there could not
be a smallest natural number m /∈ S given (i) and (ii) are known for S ⊆ N.

Remark 4. As discussed in the introduction, basic concepts related to logic,
sets, functions, and equality are all taken as given. They constitute the
logical background to the development while the Dedekind-Peano axioms
above are what we take to be the first real mathematical assumptions.6

Remark 5. Since N, 0, and σ are primitive, they do not have to be defined.
We start with some undefined terms to avoid circular definitions. All that we
know about these terms at the moment is what is set forth in the axioms. By
taking N to be primitive, we are avoiding the question “what are the natural
numbers really”. Our answer is just that they are elements of N where N is
some set satisfying the axioms. Mathematicians regard the question “what
are the natural numbers really” as not a mathematical question but as a
philosophical question. Such questions have actually played an important
role in in the history of philosophy for thousands of years, and continue to
be discussed in contemporary philosophy.

Remark 6. Some authors, especially of older texts, view the natural numbers
as starting with 1. The axioms are then written in terms of 1 instead of 0.
It makes sense to begin with 1 from a historical point of view since it took
many years for mathematicians to get comfortable with the number 0. So in
some sense 0 is not as natural as the positive integers. On the other hand,
one of the main reasons for developing the natural numbers is for counting
the size, or cardinality, of finite sets. Today the empty set ∅ is in common
use, and we need 0 to describe its cardinality.

Remark 7. You might have seen induction presented in a slightly different
style than that given above. Our axiom is in terms of sets, but you may
have seen induction described in terms of properties instead. Perhaps it was
stated in terms of identifying a certain property or statement that you want
to prove for all of N by (i) proving it for 0 (the base case) and (ii) assuming

6The real location of the line between logic and mathematics is an interesting philo-
sophical issue with no one predominate answer. The line drawn here is convenient for our
purposes.
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it for n (the inductive hypothesis) and then proving it for the next number
after n (which we call σn, but it is commonly called n+ 1).

The two versions of induction, however, are really the same. To see why,
we need to think about the connection between properties and sets. A basic
fact of set theory is that every property of natural numbers defines a subset
of N. Showing that a property holds for all natural numbers is the same
as showing that the corresponding subset S is all of N. To see an example,
consider the following problem from number theory (using ideas we haven’t
defined formally yet). Suppose you want to prove that every natural number
is the sum of four squares. Then instead of using the property “n is the
sum of four squares” for an inductive hypothesis, our version of induction
(Axiom 4) would use the set

S = {n ∈ N | n is the sum of four squares}.
The base step is to show 0 ∈ S. By the definition of S this actually amounts
to showing that 0 is the sum of four squares (0 = 02 + 02 + 02 + 02), so it
amounts to the same thing as the base case of the other form of induction.
Next you need to establish (ii) by assuming n ∈ S and showing σn ∈ S. By
definition of S this means that you assume that n is the sum of four squares
(the inductive hypothesis), and somehow try to show that the successor σn
is also the sum of fours squares (this is the hard part of the proof). Once the
base step (i) and the inductive step (ii) have been established, the induction
axiom shows that S = N. In other words, all natural numbers are the sum
of four squares. As this illustrates, using a set instead of a property is just
a very minor change of outlook, the actual work is the same.

In a later chapter we will discuss another type of induction, strong in-
duction, which is truly different from that described above. We will also
discuss versions where 0 is replaced by other “base cases”. Our first version
of induction is an axiom (Axiom 4), but the later versions will be theorems.
The later versions cannot be used until they are proved.

Remark 8. The induction axiom is more complicated than the others. There
is a cleaner way of stating this axiom using the notion of “closed” which we
now explain. If A is a subset of N then the image set σ[A] is necessarily also
a subset of N since σ is a function N → N. The subset A ⊆ N is said to be
closed under successor if σ[A] ⊆ A. In other words, σ cannot move you out
of A: for all n ∈ A, we have σn ∈ A.

Using this concept, we can express the axiom as follows:

If A ⊆ N contains 0 and is closed under successor then A = N.

Informal Exercise 2. Describe three distinct subsets of N that are closed
under σ but that are not all of N. By the above remark, none of your
examples can contain 0. This shows the importance of checking the “base
case” since all of these satisfy (ii) but not (i) of Axiom 4. Hint: since this is
informal you have available the formula σn = n+ 1 even though it has not
been proved yet. Also, one of your examples can be the empty set.
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We are ready for our first formal definition.

Definition 1. Define 1 as σ0. Define 2 as σ1.

Exercise 3. Give formal definitions of 3, 4, 5, 6, 7, 8, 9. Now we have names
for at least a few numbers. We will wait until Chapter 5 before we develop
the familiar base ten notation for naming the rest of the natural numbers.

Remark 9. Symbolic names for numbers are called numerals. There is a
difference between numbers and numerals since several names can refer to
the same number. Suitably defined, IV and 4 refer to the same number:
σ(σ(σ(σ0))). So ‘IV’ and ‘4’ are two different names, or numerals, for the
same number.7

Informal Definition 2 (Stroke numerals). One can regard any string of
strokes | as a numeral via the following rule: replace each stroke with σ
and then apply these to 0. For example, |||||| is just σ(σ(σ(σ(σ(σ0))))).
Thus ‘||||||’ and ‘6’ are two numerals, from two different systems, for the
same number. The Babylonians and the Egyptians used stroke numerals
for numbers up to nine, so would have used something like ‘||||||’ for six
(but on two rows). The Romans would have used ‘VI’ for the same number.
The stoke numerals gives a way of naming all natural numbers. However,
this convention is not very efficient or practical! Fortunately we will later
develop the more efficient base ten positional notation.

We now end this section by using the axioms to study the concept of pre-
decessor. While the successor was primitive and did not have to be defined,
predecessor needs to be defined. It is defined in terms of σ:

Definition 3 (Predecessor). Suppose a, b ∈ N. We say that “a is a prede-
cessor of b” if σa = b. We say that “b has a predecessor in N” if8 there exists
an x ∈ N such that x is a predecessor of b.

Next we see the first official theorem of the course. It is a simple proof
by contradiction.

Theorem 1. The natural number 0 does not have a predecessor in N.

Proof. Suppose otherwise that 0 has predecessor x ∈ N. By Definition 3 we
have σx = 0. This contradicts Axiom 2. Thus 0 has no predecessor in N. �

7A random person on the street might think of numerals and numbers as the same
thing. But numerals are symbols. If numbers are not symbols, what are they? This
comes back to the philosophical question: what are numbers really? As mentioned above
we sidestep this as follows: numbers are what the axioms postulate to exist. The axioms
do not specify what they really are, they just specify some of their properties. Numerals,
on the other hand, are names we give to the objects described by the axioms. In summary,
the axioms supply the numbers, but we supply the numerals to refer to these numbers,
and can do so any way we choose

8In definitions “if” really means “if and only if” in common mathematical writing.
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Now we see the first proof by induction. It is subtle in one respect. One
might want S to be the set {x ∈ N | x has a predecessor in N} for the
induction, but this definition of S does not contain 0. So Axiom 4 cannot
be used! We do not yet have a form of induction that starts at 1 (we will
establish such an induction later). So instead we just artificially put 0 in S
by using {x ∈ N | (x = 0) ∨ (x has a predecessor in N)}. We only use this
trick when we want to prove something about everything but 0.

Theorem 2. Every nonzero element of N has a predecessor in N.

Proof. Our goal is to use the induction axiom (Axiom 4). To do so we need
to define a set:

S
def
= {x ∈ N | (x = 0) ∨ (x has a predecessor in N)}.

Observe (i) 0 ∈ S by definition of S.
Next we will establish that (ii) n ∈ S =⇒ σn ∈ S for all n ∈ N. So

assume n ∈ S. Since N is the codomain of σ we have σn ∈ N. Observe
that n is a predecessor of σn by Definition 3, so σn has a predecessor. Thus
σn ∈ S by definition of S.

Now that we have established (i) and (ii) above, we can use Axiom 4 to
conclude that S = N. Since S = N, every element of N is either 0 or has a
predecessor in N. So if n ∈ N and n 6= 0 we have that n has a predecessor
in N. �

We now consider the question of uniqueness. Successors are unique simply
because they are values of a function. On the other hand we did not define
predecessors as values of a function. Note ∃! denotes “there exists a unique.”9

Exercise 4. Prove that if n ∈ N has a predecessor in N then the predecessor
is unique. In other words, show the following for all b 6= 0 in N:

∃! a ∈ N, a is a predecessor of b.

Hint: use Axiom 3.

Definition 4 (Positive). A positive natural number is a nonzero element
of N. Let N+ be the set of positive natural numbers.

The following is an immediate consequence of the above theorem, exercise,
and definition.

Corollary 3. If n ∈ N+ then n has a unique predecessor in N.

Definition 5 (Predecessor function). We define the predecessor function
π : N+ → N as follows: given n ∈ N+ we define πn to be the unique
predecessor of n.

9We do not use ! by itself to mean “unique”. The use of the exclamation mark to mean
“unique” is only used after ∃.
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In one sense the predecessor function and the successor function are in-
verses since one undoes the effect of the other. However this cannot be
literally true. Since π is a function N+ → N, its inverse (if it exists) must
be a function N → N+. To deal with this technicality we define a modified
successor function.

Definition 6 (Modified successor). We define the modified successor func-
tion σ′ : N → N+ as follows: Given n ∈ N we define σ′n to be σn. Since
σn is not 0 (Axiom 2), and since σ′n is just σn, we know that σ′n is in the
set N+. So this definition yields a function with codomain N+ as desired.

Observe that σ′n = σn for all n ∈ N. The only difference between the
functions is the codomain.

Exercise 5. Let a ∈ N and b ∈ N+. Show that πb = a if and only if σ′a = b.

Exercise 6. Let a ∈ N. Show that π(σ′a) = a. Hint: let b = σ′a and
substitute for b in the above exercise.

Exercise 7. Let b ∈ N+. Show that σ′(πb) = b.

Exercise 8. Show that π and σ′ are inverse functions. Conclude that they
are both bijections.

Hint: recall that f : A→ B and g : B → A are called inverse functions if
(i) g(f(x)) = x for all x ∈ A, and (ii) f(g(y)) = y for all y ∈ B. Recall also
that a function is a bijection if it is both injective and surjective. Finally,
recall that a function f : A → B is bijective if and only if it has an inverse
function (from B to A).

Exercise 9. We know that σ′ is bijective. Show that σ is not a bijection.

Exercise 10. The mathematician Dedekind defined a set S to be infinite
if there is a bijection S → T where T is a proper subset of S. Explain
why N is infinite according to Dedekind’s definition.10 (We will give another
definition of infinite in Chapter 3).

Exercise 11. Show that if n ∈ N then n 6= σn. Do so by defining a certain
set S ⊆ N and using the induction axiom to show S = N.

In particular this shows that 0 6= 1, and 1 6= 2, and so on. It does not
mean 0 6= 2 though, this has to be proved separately!

3. Iteration

At this point the only operations we have are successor and predeces-
sor. But any self-respecting theory of arithmetic also needs addition and
multiplication. Our strategy for developing these operations is simple: we
define addition in terms of iterated successor, and multiplication in terms of
iterated addition. Continuing on, we will define exponentiation in terms of
iterated multiplication. These definitions all rely on the general concept of
iteration, so in order to reach our goal of basic arithmetic, we need to take
a side trip through iteration.

10A proper subset of S is a subset that is not equal to S.
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Informally, we can think of iteration in terms of repeating an action or
processes.11 In these notes we think of operations, actions, processes, and
such in terms of functions. So iteration will mean repeatedly applying a
function.

For example, applying the function f : S → S twice to an element x ∈ S
yields f(f(x)), which is the same as appying the composition f ◦ f once
to x. Likewise, applying f ◦ f ◦ f to x gives the third iteration, and so on.
We see that there is a close relationship between repeated composition and
iteration. Note that in order to be able to compose a function with itself,
it must have a codomain that matches its domain. So we want f to be a
function S → S for some set S. In summary:

Informal Definition 7. Let f : S → S be a function. Observe that we are
restricting ourselves to a function whose domain and codomain agree. The
second iteration f2 is f ◦ f , the third iteration f3 is f ◦ f ◦ f , the fourth
iteration f4 is f ◦f ◦f ◦f , and so on. In general, if n ≥ 2 is a natural number,
the nth iteration fn is obtained by composing f with itself n times.

Remark 10. This is just an informal definition because some ideas in it, such
as “composing f with itself n times”, have not been formally defined.

Remark 11. We assume that the reader is already knowledgeable about
composition of functions (Chapter 0). Recall that f ◦ g is only defined if
the codomain of g is equal to the domain of f . Another important fact:
composition is associative (when it is defined):

f ◦ (g ◦ h) = (f ◦ g) ◦ h.
This fact allows us to drop parenthesis without introducing ambiguity. So
f ◦ g ◦ h can refer to either f ◦ (g ◦ h) or (f ◦ g) ◦ h, but both possibilities
are equal by the associative law for composition.

What is fn if n is 0 or 1? Informally, it makes sense to define f1 as f
itself since if you apply this function 1 time to an x in the domain, you get
f(x). What if you apply f to x zero times? You will just have x. So it
makes sense, informally speaking, to define f0 as the identity function.

Here is the formal axiom:

Axiom 5 (Iteration). Let f : S → S be a function from a set S to itself, and
n ∈ N. Then the nth iteration of f is a function from S to itself. We write
the nth iteration of f as fn : S → S. Such functions satisfy the following:
(i) f0 is the identity function on S, and (ii) fσn = f ◦ fn.

Remark 12. Here iteration is regarded as a primitive notion. In a later
section (Section 9), however, we will see that there is a way in which the
nth iteration can be defined and the the properties (i) and (ii) proved. Thus,
for those willing to do some extra work, the above can be converted from
an axiom to a theorem.

11The verb iterate comes from the Latin verb itero meaning ‘repeat’.
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I have decided to move the proof to Section 9 because it is fairly long
and a bit tricky, and because I want to get to basic arithmetic as soon as
possible. Ultimately, however, it is an “eliminatable axiom”.

Exercise 12. Use this axiom to prove that

f1 = f, f2 = f ◦ f, f3 = f ◦ (f ◦ f).

Informal Exercise 13. Consider the function f : R → R defined by the
rule x 7→ 3x. Give a formula for the fifth iterate. In other words, describe
f5. What is g3 if g : R→ R is defined by the formula g(x) = 2x2 + 1? Here
R is the set of real numbers (to be developed later in the course).

Exercise 14. Let f : S → S be given. Prove that f2 is the identity function
on S if and only if f = f−1.

Note: Here we are using ‘−1’ as a symbolic expression to mark the inverse
function; it does not yet refer to a number. We will not define negative num-
bers until Chapter 4. Recall that f−1 is defined to be the inverse function
of f , which exists if and only if f is bijective.

Exercise 15. Prove that σ3(2) = 5 where σ : N → N is the successor
function.

Informal Exercise 16. What is σn(m)?

Informal Exercise 17. Propose an informal definition of addition in terms
of iteration of the successor function. Discuss how multiplication can be
explained of in terms of iteration of addition, and how exponentiation can
be explained in terms of iteration of multiplication.

4. Addition

As mentioned above, we define addition in terms of iteration of successor.
Informally, you get m + n by starting with m and taking the successor n
times. This idea motivates the formal definition.

Definition 8 (Addition). Let m,n ∈ N. Let σn : N → N be the nth
iteration of the successor map. Then

m+ n
def
= σn(m).

Observe that addition defines a function N× N→ N.

Remark 13. Functions S ×S → S are called binary operations. Thus + is a
binary operation on N.

Remark 14. This is not the only way of viewing addition. In Chapter 3, we
will show how + can be understood in terms of counting the elements in a
disjoint union.

The following are consequences of the iteration axiom and Definition 8.

Theorem 4. For all m ∈ N
m+ 0 = m.
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Proof. By definition m + 0 = σ0(m). Recall that σ is a function N → N.
By the iteration axiom, σ0 is the identity i : N → N. Thus σ0(m) = m by
definition of identity function. So m+ 0 = m by transitivity of equality. �

Lemma 5. For all m,n ∈ N

m+ σn = σ(m+ n).

Exercise 18. Prove the above lemma.

Remark 15. As mentioned earlier a lemma is a kind of theorem whose pur-
pose in life is to help prove more important theorems. The above result is
relegated to the role of lemma not because it is not of independent interest,
but because it will be superseded by a more general theorem (the associative
law of addition), so its usefulness is only temporary.

Lemmas are not always simple. In fact, many times in mathematics a
lemma will be more complicated to state or harder to prove than the main
theorem. Part of the art of mathematics is to decide what lemmas to prove
in order to make the proofs of the important theorems as clear and elegant
as possible.

Remark 16. Many authors define addition in terms of recursion instead of
iteration of successor. The above theorem and lemma are the two recursion
conditions used in this approach.

Informally we know that successor σ is just addition by one. The following
makes this official:

Theorem 6. For all m ∈ N

m+ 1 = σm.

Exercise 19. Prove the above theorem.

Remark 17. From now we can replace σm with m + 1 whenever we want.
Based on the above theorem, these two expressions are completely inter-
changeable.

Exercise 20. Use the above theorem to prove that 1 + 1 = 2.

Exercise 21. Prove that 2 + 2 = 4. Prove that 2 + 3 = 5. Prove that
3 + 2 = 5.

Now we come to the first major theorem of the chapter.

Theorem 7 (Associative Law). For all x, y, z ∈ N

x+ (y + z) = (x+ y) + z.

Proof. Fix x, y ∈ N, and let Sx,y ⊆ N be the set of z ∈ N with the property
that x+ (y + z) = (x+ y) + z.

First we observe that 0 ∈ Sx,y since, by Theorem 4 (twice),

x+ (y + 0) = x+ y = (x+ y) + 0.
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Now assume z ∈ Sx,y. By Lemma 5 (several times) and our assumption,

x+
(
y + σz

)
= x+ σ(y + z)

= σ
(
x+ (y + z)

)
= σ

(
(x+ y) + z

)
= (x+ y) + σz.

So σz ∈ Sx,y.
By the induction axiom, Sx,y = N. This is true for any x, y ∈ N. So if

x, y, z ∈ N are arbitrary, z ∈ Sx,y which implies x+(y+z) = (x+y)+z. �

Remark 18. This proof by induction is valid, but, like many induction proofs,
is weak on conveying an understanding why associativity is true. In Chap-
ter 3 we give a second, more insightful proof involving the set theoretic
identity A ∪ (B ∪ C) = (A ∪B) ∪ C.

Warning: we do not yet have the commutative law. Thus the next two
lemmas are not redundant. They do not merely repeat Theorems 4 and 6,
but assert something truly new. They are lemmas since, once the com-
mutative law is proved, they will become redundant. So they are only of
temporary use.

Lemma 8. If n ∈ N then σn(0) = n. In particular 0 + n = n.

Lemma 9. If n ∈ N then 1 + n = σn.

Proof. Let S = {x ∈ N | 1 + x = σx}. So 0 ∈ S since 1 + 0 = 1 = σ0.
Suppose n ∈ S.

1 + σn = 1 + (n+ 1)

= (1 + n) + 1

= σn+ 1

= σ(σn).

So σn ∈ S.
We conclude that S = N. �

Exercise 22. Prove Lemma 8. Complete the above sketchy proof of Lemma 9
by justifying every step by referring to earlier results, definitions, assump-
tions, or axioms, or by referring to the definition of S.

Theorem 10 (Commutative Law). If x, y ∈ N then

x+ y = y + x.

Proof. Fix x ∈ N, and let Sx = {u ∈ N | x+ u = u+ x}. By Theorem 4 and
Lemma 8, we get 0 ∈ Sx.
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Now assume n ∈ Sx. So

x+ σn = σ(x+ n)

= σ(n+ x)

= 1 + (n+ x)

= (1 + n) + x

= σn+ x

We conclude that σn ∈ Sx.
By the induction axiom, Sx = N. This is true of any x ∈ N since x

was chosen to be any arbitrary element of N. Now let x, y ∈ N be any two
elements of N. Since Sx = N, we have y ∈ Sx. By definition of Sx we
conclude that x+ y = y + x. �

Remark 19. In Chapter 3 we see a more insightful proof of the commutative
law involving the set theoretic identity A ∪B = B ∪A.

Exercise 23. Justify every step in the above proof by referring to earlier
results, assumptions, or axioms, or by referring to the definition of Sx.

Exercise 24. Prove (x+ y) + z = (x+ z) + y without using induction.

5. Multiplication

As mentioned above, our strategy for defining multiplication is to use
iteration of addition. To understand, how this works, first consider the
following familiar informal definition:

m · n = m+m+ · · ·+m+m︸ ︷︷ ︸ .
n times

We can interpret the phrase “n times” in terms of iteration. To see this,
notice how we can build up to this sum in n steps:

Step 1: Add m to 0: 0 +m
Step 2: Add m to previous result: (0 +m) +m
Step 3: Add m to previous result:

(
(0 +m) +m

)
+m

...

Observe that we are just iterating the function x 7→ x+m as we go through
the steps: every step involves applying x 7→ x + m where x is the result of
the previous step. Observe also that the nth step results in m · n, and that
we start with x = 0 in the first step. (If we started with x = m, which might
seem more natural, we would only use n−1 steps. We prefer to take exactly
n steps, so we want to start at x = 0). We call the function x 7→ x+m the
“addition by m” function or the “translation by m” function, and we write
it as αm. Multiplication is obtained by iterating αm. For the product m ·n,
we iterate n times.

This informal discussion motivates the following formal definition:
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Definition 9 (Multiplication). Let m,n ∈ N. Let αm : N → N be defined
by the rule x 7→ x+m, and let αnm be the nth iteration of αm. Then

m · n def
= αnm(0).

In particular, multiplication defines a binary operation N × N → N. As is
common, we do not always need to write the dot ·, but can use juxtaposition
to indicate multiplication.

Remark 20. This is not the only way of viewing multiplication. In Chap-
ter 3, we will show how multiplication can be thought of in terms of counting
the elements in the Cartesian product of two finite sets. Another popu-
lar approach is through recursion (using the equations of Theorem 11 and
Lemma 12).

Exercise 25. Prove the following theorem, lemma, and theorem using the
iteration axiom and the definition of multiplication.

Theorem 11. For all m ∈ N

m · 0 = 0.

Lemma 12. For all m,n ∈ N

m · σn = (m · n) +m.

Theorem 13. For all m ∈ N

m · 1 = m.

Exercise 26. We already have proved that 2 + 2 = 4 and 3 + 2 = 5 (Exer-
cise 21). Use the results concerning addition to give proofs of the following:
4 + 2 = 6, 5 + 2 = 7, 6 + 2 = 8, 7 + 2 = 9, 3 + 3 = 6, 4 + 3 = 7, 5 + 3 = 8,
6 + 3 = 9, 4 + 4 = 8, 5 + 4 = 9. Use these addition facts together with The-
orems 11 and 13 and Lemma 12 to show the following: 0 · 0 = 0, 0 · 1 = 0,
0 · 2 = 0, 1 · 1 = 1, 1 · 2 = 2, 2 · 0 = 0, 2 · 1 = 2, 2 · 2 = 4, 2 · 3 = 6,
2 · 4 = 8, 3 · 2 = 6, 3 · 3 = 9.

Theorem 14 (Distributive Law: part 1). For all x, y, z ∈ N

(x+ y)z = xz + yz.

Remark 21. We adopt the usual conventions for dropping parentheses. Thus,
when the parentheses and the dots are restored, the above equation is

(x+ y) · z = (x · z) + (y · z).

Exercise 27. Prove the distributive law. Do so by defining, for any fixed
x, y ∈ N, a set Sx,y ⊆ N. Show that Sx,y = N by the axiom of induction. In
order to give a complete and rigorous proof, do not leave any parentheses
out in this proof.
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Remark 22. This induction proof is valid but, like many induction proofs,
weak on conveying an understanding why the result is true. In Chapter 3
we will see a second proof using the set theoretic identity

(A ∪B)× C = (A× C) ∪ (B × C).

Lemma 15. If n ∈ N then 0 · n = 0.

Lemma 16. If n ∈ N then 1 · n = n.

Exercise 28. Prove the above two lemmas using the induction axiom.

Theorem 17 (Commutative Law). For all x, y ∈ N

xy = yx.

Proof. Fix x ∈ N. Let Sx = {u ∈ N | xu = ux}. We wish to show y ∈ Sx.
We do so by showing all natural numbers are in Sx (via induction).

By Theorem 11 and Lemma 15, we get 0 ∈ Sx.
Now assume n ∈ Sx. Then

x · σn = xn+ x

= nx+ x

= n · x+ 1 · x
= (n+ 1) · x
= σn · x.

We conclude that σn ∈ Sx.
By the induction axiom, Sx = N. Thus y ∈ Sx which implies xy = yx. �

Exercise 29. Justify every step in the above proof.

Remark 23. In Chapter 3 we give a more insightful proof involving the
natural bijection from A×B to B ×A.

Corollary 18 (Distributive Law: part 2). For all x, y, z ∈ N

x(y + z) = xy + xz.

Exercise 30. Prove the above corollary using the commutative law, and
without using induction.

Exercise 31. Try to prove the following without looking at the given proof.
If you get stuck, take a short peek at the proof for ideas. Now compare your
proof to the given proof. Justify every step in the given proof.

Theorem 19 (Associative Law). For all x, y, z ∈ N

x(yz) = (xy)z.

Proof. Let Sx,y =
{
u ∈ N | x(yu) = (xy)u

}
.

First we check that 0 ∈ Sx,y. This follows from Theorem 11.
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Now assume n ∈ Sx,y. So

x
(
y(n+ 1)

)
= x

(
(y · n) + (y · 1)

)
= x

(
(yn) + y

)
=

(
x(yn)

)
+ (xy)

=
(
(xy)n

)
+
(
(xy)1

)
= (xy)(n+ 1)

So σn = n+ 1 is in Sx,y.
By the induction axiom, Sx,y = N. In particular, z ∈ Sx,y. �

6. Exponentiation

Just as repeated addition gives multiplication, repeated multiplication
gives exponentiation. In other words, you can define exponentiation via the
iteration of a multiplication function. How we do this for exponentiation is
similar to how we developed multiplication, so the details will be left to the
reader.

Definition 10. Let m,n ∈ N. Let µm : N → N be defined by the rule
x 7→ xm. Let µnm be the nth iteration of µm. Then

mn def
= µnm(1).

Remark 24. One amusing aspect of our approach is that exponential nota-
tion is used for iteration (Section 3) before it is used in the traditional way
for exponentiation itself (here in Section 6). This is a symptom of the large
emphasis we place on functions and their iterates. Our convention is that
when an exponent is used with a function it refers to iteration, but when it
is used with a number it refers to exponentiation.

Informal Exercise 32. In contrast with the previous section, we start
with 1 instead of 0 in our iterative definition. What would happen if we
used 0 instead of 1 in Definition 10?

Remark 25. This is not the only way of viewing exponentiation. In Chap-
ter 3, we will see how it can be defined in terms of counting the number of
functions between two sets. It can also be defined using recursion.

Informal Exercise 33. Do you expect (m,n) 7→ mn to be a commutative
binary operation N × N → N? Do you expect it to be associative? If you
said ‘no’ to either question, back up your answer with a counter-example.

Theorem 20. For all m ∈ N

m0 = 1.

Lemma 21. For all m,n ∈ N

mσn = mn ·m
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Theorem 22. For all m ∈ N

m1 = m.

Exercise 34. Prove the above theorems and lemmas.

Exercise 35. Use the above theorems and lemmas to show the following:
00 = 1, 22 = 4, 23 = 8.

Warning. Although the equation 00 = 1 is valid in our current context, there
are some parts of mathematics where 00 is regarded as undefined. This is
related to the use of limits in calculus where we have to be careful with limits
that converge to indeterminate expressions of the form 0/0, ∞/∞, ∞−∞,
or even 00. Limits of expressions in indeterminate form do not consistently
converge to any fixed value. In fact, some limits in indeterminate form
diverge, and some converge, and those that converge do not all converge
to the same value. The problem with limits with indeterminate form 00 is
related to the fact that the function f(x, y) = xy is not continuous at (0, 0).
So in calculus and other contexts, 00 is often left undefined.

Theorem 23. If x, y, n ∈ N then

(xy)n = xnyn.

Exercise 36. Prove the above using induction on n. In other words, apply
the induction axiom to a certain set Sx,y.

Theorem 24. If x,m, n ∈ N then

xm+n = xmxn.

Exercise 37. Prove the above using induction on n. In other words, apply
the induction axiom to a certain set Sx,m.

Theorem 25. If n ∈ N is not 0 then

0n = 0.

Exercise 38. Prove the above without induction. Use Theorem 2 to first
show that n = σm for some m.

Theorem 26. If n ∈ N then

1n = 1.

Theorem 27. If x, n,m ∈ N then(
xm
)n

= xmn.

Exercise 39. Prove the above two theorems.
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7. Other properties of addition

There are a few more facts about addition that we will need in the next
chapter.12

Theorem 28. If m,n ∈ N are such that 0 = m+ n then m = n = 0.

Proof. Suppose n 6= 0. Then n = σ(x) for some x ∈ N. Thus

0 = m+ n = m+ σ(x) = σ(x+m).

This contradicts Axiom 2. From this contradiction, we conclude n = 0.
From n = 0 and 0 = m+ n we get m = 0 as well using Theorem 4. �

Exercise 40. Supply the missing justifications in the above proof, including
every step in the chain of equalities

0 = m+ n = m+ σ(x) = σ(x+m).

By definition of addition, we know that N is closed under addition. In
other words, if a, b ∈ N then a+b ∈ N. The following shows that N+ is closed
as well. Recall that N+ is the set of nonzero natural numbers (Definition 4).

Corollary 29. The set N+ of positive natural numbers is closed under ad-
dition. In other words, if m,n ∈ N+ then m+ n ∈ N+.

Exercise 41. Prove the above corollary.

Now we turn our attention to the cancellation law for addition. Both
addition and multiplication have cancellation laws. For addition the law
states that if x+z = y+z then x = y. In other words, we cancel z. Contrary
to what one might think, the operation of subtraction is not needed to state
or prove this law. For multiplication the law states that if xz = yz and
z 6= 0 then x = y. Note the extra condition z 6= 0. The cancellation law for
multiplication will be proved in the next chapter.

First we consider the contrapositive form (which is a bit easier to prove):

Theorem 30. Suppose x, y ∈ N are distinct: x 6= y. Then x + z 6= y + z
for all z ∈ N.

Proof. Fix x, y ∈ N distinct, and let Sx,y = {z ∈ N | x + z 6= y + z}. Since
x+ 0 = x and y + 0 = y, we have x+ 0 6= y + 0. So 0 ∈ Sx,y.

Suppose that n ∈ Sx,y. We wish to show that σn = n+ 1 is in Sx,y, i.e.,
that x+ σ(n) 6= y + σ(n). Since n ∈ Sx,y we have x+ n 6= y + n. Since σ is
injective, we have σ(x+ n) 6= σ(y + n). Observe that by Lemma 5

σ(x+ n) = x+ σ(n), and

σ(y + n) = y + σ(n).

Thus x+ σ(n) 6= y + σ(n). In other words, σ(n) ∈ Sx,y.
By the induction axiom, Sx,y = N. Thus, x+ z 6= y + z for all z ∈ N. �

12Nothing in this section uses the results of Section 5 or 6.
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Theorem 31 (Cancellation Law). Suppose x, y, z ∈ N. Then

x+ z = y + z implies x = y.

Proof. Suppose that x + z = y + z, but that x 6= y. By Theorem 30, this
implies that x+ z 6= y + z, a contradiction. �

In Exercise 11 we saw that n 6= n + 1. The following generalizes this to
other sums. It can be used to show, for instance, that the natural numbers
we have defined so far, 0, 1, 2, 3, 4, . . . , 9, are pairwise distinct.

Theorem 32. Suppose n,m, b ∈ N. If n = m+ b where b 6= 0 then n 6= m.

Proof. Suppose n = m+ b where b 6= 0, but that n = m. So

b+m = m+ b = n = m = 0 +m.

By the cancellation law b = 0, contradicting our hypothesis. �

8. The universal property (optional)

Earlier we adopted the iteration axiom and used it to help define and
prove the basic properties of addition, multiplication, and such. However,
a promise was made to show that the iteration axiom is not needed since
it can be derived from the Peano axioms. In this section we prepare for a
proof of the iteration axiom by making a careful study of iteration.

In order to avoid circularity we will appeal only to the Peano axioms, and
not to any theorems proved with the assistance of the iteration axiom. In
fact, this section and the next could be cut and pasted immediately after
Section 2 with no loss of logical rigor. I did not do this since I felt that
the development would go more smoothly if we applied iteration to define
and prove things about addition, multiplication, and such before giving the
more elaborate proofs justifying iteration.

Let’s begin with an informal discussion about iteration. The raw materials
of iteration consists of a set A and a function s : A → A. If you choose a
starting element z ∈ A and repeatedly apply s you will get

z, s(z), s(s(z)), s(s(s(z))), s(s(s(s(z)))),

and so on. We can informally think of this as a sort of “path”, and we can
think of s as determining a “step”. Metaphorically, you are starting with z
and stepping along a path away from z.

An example of this is the definition of m + n by iteration of σ : N → N.
In that case we start with z = m and iterate σ a total of n times. In other
words, we take n steps along the path to reach our goal of m+n. Here each
step consists of applying σ to the previous result.

Fix z ∈ A and s : A → A as above. The following theorem defines a
function ϕ : N→ A that in some sense identifies the result of taking n steps
starting from z. In other words,

ϕ(0) = z, ϕ(1) = s(z), ϕ(2) = s(s(z)), ϕ(3) = s(s(s(z))),
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and so on. This function will depend, of course, on z and s, and we could
write it as ϕz,s if we want to make this dependency clear. It turns out that
the condition ϕ◦σ = s◦ϕ is what is needed to force ϕ to be such a “stepping
function” (see the corollary).

This informal discussion helps motivate the following theorem. It states
that is is possible to find such a function ϕ.

Theorem 33 (Universal Property of N). Suppose A is a set, z ∈ A is an
element, and s : A → A is a function. Then there is a unique function
ϕ : N→ A such that ϕ(0) = z and ϕ ◦ σ = s ◦ ϕ.

Proof. Let σ2 : N×A→ N×A be defined by the rule (n, a) 7→ (σn, sa). (It
is called σ2 since it takes pairs to pairs). For a subset R of N×A, we say R
is z-closed if (i) (0, z) ∈ R and (ii) σ2[R] ⊆ R. This second condition means
that if (n, a) ∈ R then (σn, sa) must be in R.

Observe also that the intersection of z-closed sets is z-closed. Observe
that whole set N × A is z-closed. Let N be the intersection of all z-closed
sets (the z-closure), so N is itself closed. Since it is the intersection of all
z-closed set, N is contained in any given z-closed set.

Since (0, z) ∈ N and σ2[N ] ⊆ N , it follows that σ2[N ] ∪ {(0, z)} ⊆ N .
Check that σ2[N ] ∪ {(0, z)} is z-closed. So, by the minimality of N ,

N = σ2[N ] ∪ {(0, z)}.

We say n ∈ N is paired-up if N has a unique pair (n, a) with first coordi-
nate n. In this case, we say that a corresponds to n. Claim: all n ∈ N are
paired up. We prove this claim by induction.

Since N = σ2[N ]∪{(0, z)}, it follows that 0 is paired-up: Axiom 2 implies
that no pair of the form (0, a) is in the image of σ2. Also, z corresponds
to 0.

Suppose that n is paired-up. Then there is a unique pair (n, a) ∈ N . Thus
(σn, sa) is in N since N is z-closed. We now want to show (σn, sa) is the
unique pair with first coordinate σn. So, suppose (σn, b) is also in N . Since
N = σ2[N ] ∪ {(0, z)} and since σn 6= 0 it follows that (σn, b) ∈ σ2[N ]. So
(σn, b) = (σm, sc) for some pair (m, c) ∈ N . Since σ is injective, m = n. So
(n, c) ∈ N . Observe that (n, a) and (n, c) are in N . But n is paired-up, so,
by uniqueness, c = a. Thus (σn, b) = (σm, sc) = (σn, sa). This concludes
the argument for uniqueness and shows that σn is paired-up.

Let S ⊆ N be the subset of paired-up elements. By the induction axiom,
S = N. Thus every natural number is paired-up.

Let ϕ be defined by the rule n 7→ a where a corresponds to n. In
other words ϕn corresponds to n, so (n, ϕn) ∈ N . Since N is z-closed
(σn, s(ϕn)) ∈ N . Thus s(ϕn) corresponds to σn. So ϕ(σ(n)) = s(ϕ(n)) by
the definition of ϕ. This holds for all n ∈ N, so we have established that
ϕ ◦ σ = s ◦ ϕ. Since z corresponds to 0, we have ϕ(0) = z. We have now
established the existence of the desired ϕ.
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We now show uniqueness. Suppose that ϕ′ : N→ A is such that ϕ′(0) = z
and ϕ′ ◦ σ = s ◦ ϕ′. We need to show that ϕ = ϕ′. If W is the set of n ∈ N
such that ϕ(n) = ϕ′(n), we need to show W = N. We do this by induction.

Observe that ϕ(0) = z = ϕ′(0), so 0 ∈ W . Now assume that n ∈ W , so
ϕ(n) = ϕ′(n). Then s(ϕ(n)) = s(ϕ′(n)). However,

ϕ(σn) = (ϕ ◦ σ)(n) = (s ◦ ϕ)(n) = s(ϕ(n)),

and

ϕ′(σn) = (ϕ′ ◦ σ)(n) = (s ◦ ϕ′)(n) = s(ϕ′(n)).

So ϕ(σn) = ϕ′(σn). In particular, σn ∈W .
By the induction axiom, W = N. So, ϕ = ϕ′. �

Exercise 42. Let A, s, z, ϕ be as in the above theorem. Show the following

ϕ(0) = z, ϕ(1) = s(z), ϕ(2) = s(s(z)), ϕ(3) = s(s(s(z))).

Informal Exercise 43. Describe ϕ in the case where A = {0, 1}, z = 0,
and s : A → A is defined by the rule 0 7→ 1 and 1 7→ 0. What if z = 1
instead? What if s is the identity function instead?

Remark 26. This theorem is called the universal property of N. To explain
this, we need to discuss some ideas related to category theory.

In the last 60 years or so, mathematicians have become more concerned
with the notion of structure. Roughly speaking, a structure is typically a
set equipped with special relations, functions, binary operators, elements,
and the like. The field of mathematics that is used to compare structures
is category theory. We will not discuss category theory in general, but will
illustrate some ideas of category theory in the context of the above theorem.

Recall that the first of the Peano axioms describes N as a set equipped
with two things (i) a starting element 0 ∈ N and (ii) a function (called the
successor function) σ : N→ N, that can be used to “take steps” away from
the starting point 0. Similarly, the set A in the theorem is given with a
function s : A → A and a starting element z. We can view N and such a
set A as examples of a certain basic type of structure. Let’s make up some
fancy terminology and call such a structure a path structure since we indicate
a starting point and from there can go on a path through the set by using the
function to take steps. More precisely, a path structure is a set A equipped
with (i) a starting point z ∈ A and (ii) a stepping function s : A→ A.

A simple example of a path structure is the set A = {0, 1} where we
declare the starting point to be 0 and declare the stepping function to be
the function s : A → A defined by the rule 0 7→ 1 and 1 7→ 0. Repeating
s gives you the path 0, 1, 0, 1, 0, . . .. As you can see, we do not require that
every path structure satisfy all the Peano axioms. For example, in this
structure 0 is in the image of the stepping function.

We use different path structures for different situations. The path struc-
ture most appropriate for defining mn is that given by taking the set N,
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but declaring the starting point to be 1, and declaring the stepping func-
tion to be µm(x) = xm. Following a path in this structure would give you
1,m,m2,m3,m4, . . ..

The collection of all possible path structures forms something that math-
ematicians call a category.

Now, among all path structures, N is very special: Theorem 33 shows
it maps (uniquely) to any other path structure in a special way. More
specifically, given any other path structure A, there is a function ϕ : N→ A
such that (i) 0 7→ z and (ii) ϕ ◦ σ = s ◦ ϕ. The first condition says that ϕ
sends the start to the start. The second condition matches σ with s. We
can illustrate the second condition with the following commutative diagram:

N ϕ−−−−→ Ayσ ys
N ϕ−−−−→ A

What this diagram expresses is that both ways of going from the top left
set to the bottom right set gives the same image.13 This diagram expresses
the equation ϕ ◦ σ = s ◦ ϕ.

The existence of this special ϕ is called the universal property of N. In
other words, N has the universal property of being able to map uniquely
into any other path structure (in a path compatible way).

Remark 27. The universal property (Theorem 33) is important for other
reasons besides describing iteration. In fact, it makes it easy to show that
any two models of the Peano axioms are “isomorphic”. However, we will
skip this important isomorphism theorem since explaining in precisely will
lead us too far afield.

9. Eliminating the iteration axiom (optional)

We now use Theorem 33 to show that the iteration axiom can be dispensed
with. In other words, it can be proved as a theorem.

Theorem 34. Let f : S → S be a function. Then one can assign to every
n ∈ N a function fn : S → S such that (i) f0 is the identity function on S,
and (ii) fσn = f ◦ fn.

The idea behind this theorem is to use Theorem 33 to describe iteration.
If a ∈ S then we want to consider the iteration process giving

a, f(a), f(f(a)), f(f(f(a))), f(f(f(f(a)))),

and so on. So we apply the theorem to the case where A = S, z = a, and
s = f . Then fn(a) is obviously ϕ(n). We give the details below:

13In category theory the map ϕ is called a morphism or a homomorphism because it
in some sense preserves the form (“morph”) of the structures. Different categories have
different types of morphisms. For example, in the category of vector spaces, the morphisms
are linear maps: they preserve the linear structure.
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Proof. Define fn by the rule a 7→ ϕa(n) where ϕa is the function ϕ described
in Theorem 33 given by choosing A = S, s = f , and z = a. Observe that fn

sends elements a ∈ S to elements of S.
Observe also that f0(a) = ϕa(0) = a (because z = a in this case). Thus f0

is the identity function.
Finally, use Theorem 33 to observe that

fσn(a) = ϕa(σn) = f(ϕa(n)) = f(fn(a)) = f ◦ fn(a)

(recall s = f). This holds for arbitrary a ∈ S, so fσn = f ◦ fn. �

There is another proof that is interesting (also based on Theorem 33, but
with different choice of A, z and s : A→ A):

Proof. (Second proof) Let A be the set of functions from S to itself. Let z
be the identity function on S. Let s : A → A be the map that sends a
function g to f ◦ g.

Let ϕ : N → A be as in Theorem 33. Define fn to be ϕ(n). Since A
consists of functions from S to itself, fn maps S to S. Since ϕ(0) = z, we
have that f0 is the identity function on S. Finally, since ϕ ◦ σ = s ◦ ϕ,

fσn = ϕ(σn) = ϕ
(
σ(n)

)
= s
(
ϕ(n)

)
= s(fn) = f ◦ fn.

This completes the proof. �

Remark 28. There is also a uniqueness result. Let maps(S, S) be the set
of all functions S → S (written A in the second proof). Then the theorem
describes the existence of a function N → maps(S, S), given by n 7→ fn,
that satisfies certain properties. The second proof above can be modified
and extended to show the uniqueness of the function N→ maps(S, S) with
the desired properties.


