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This appendix contains an informal survey of some key results concern-
ing polynomials. These results illustrate some very important properties of
various number systems. For example, one reason the complex numbers are
so important in mathematics is that every polynomial with coefficients in C
has a full set of roots.

Only some of the results in this appendix are proved. With or without
proof they are included due to their importance in mathematics.

1. Polynomial rings

Polynomials can be constructed in a rigorous manner in the style of our
other constructions of the number systems, and the operations of addition
and multiplication can be defined rigorously. However, to do so here would
take us to far afield. So we will appeal to common (precalculus level) expe-
rience in our approach to polynomials.

Definition 1 (Set of polynomials). Let R be a commutative ring, and x a
variable. Then R[x] is the set of polynomials anx

n + . . . + a1x + a0 with
coefficients ai ∈ R.

Remark 1. We adopt the usual conventions for identity, negation and sub-
traction used in algebra. So x2 − 2x − 1 is short for 1x2 + (−2)x + (−1),
and −x3 + x is short for (−1)x3 + 0x2 + 1x + 0.

In the above x can be replaced by any given variable. The variable must
be a “symbolic” variable. That is, it must be a variable not currently being
used to represent a fixed value. So if y is not being used to represent a fixed
value, we can define Z[y], say, to be the set of polynomials with variable y and
coefficient in Z. This set would contain 3y2−2, but would not contain 3x2−2
or (1/2)y2.

Example. Observe that 7x3 − 3x2 + 11 is in Z[x]. It is also in Q[x], in R[x],
and in C[x] since Z ⊆ Q ⊆ R ⊆ C. Observe that 7

11x
3 − 3x2 + 11 is in Q[x]

but not in Z[x]. Observe that 7T 3 −
√

2T 2 + T − 11 is in R[T ] but not
in Q[T ]. Observe that Z − i is in C[Z] but not in C[S].
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2 POLYNOMIALS

If anx
n + . . . + a1x + a0 is a polynomial with coefficients ai, we adopt

the convention that ai = 0 for all values of i not occurring in the expres-
sion anx

n + . . . + a1x + a0. For example, when writing 7x3 + x− 11 in the
form anx

n+. . .+a1x+a0, we consider a2 = 0 and a4 = 0, but a3 = 7, a1 = 1
and a0 = −11. Two polynomials anx

n+. . .+a1x+a0 and bkx
k+. . .+b1x+b0

are defined to be equal if and only if ai = bi for all i ≥ 0.

Example. Observe that 6x3 + 2x2 − x + 1 = −x2 + 2x + 1 in F3[x].

Among the polynomials in R[x] are the constant polynomials a0. In other
words, a0 ∈ R can be thought of as both an element of R and as a constant
polynomial in R[x]. Thus R ⊆ R[x]. (More formally, we define an injective
canonical embedding R→ R[x] which maps c to the constant polynomial c.)

Polynomials are added and multiplied in the usual way. For example,
in Z6[x] the product of 2x2 +3x+1 with 3x2 +2 can be computed as follows

(2x2 + 3x + 1)(3x2 + 2) = 6x4 + 4x2 + 9x3 + 6x + 3x2 + 2 = 3x3 + x2 + 2.

Exercise 1. Multiply 2x2 + 3x + 1 by 3x2 + x− 2 in F5[x].

The set R[x] is closed under addition and multiplication. So + and × give
two binary operations R[x] × R[x] → R[x]. It turns out (but we skip the
proofs), that these operations satisfy the expected associative, commutative,
distributive, identity and inverse laws. More precisely, the following holds.

Theorem 1. If R is a commutative ring, then R[x] is also a commutative
ring. The additive identity is the constant 0 polynomial, and the multiplica-
tive identity is the constant 1 polynomial.

2. Substitutions

Definition 2 (Substitution). If f ∈ R[x] then f(a) denotes what we get
when we substitute a for x in f . It is defined whenever the substitution
makes sense (typically when a is in R, or when a is in a ring containing R).

Example. If f = x2 + 1 in Z8[x] then f(3) = 2.

Example. If f = x3 in Z12[x] then f(x + 2) = (x + 2)3 = x3 + 6x2 + 8. (Did
you see what happened to the linear term?).

Example. If f ∈ R[x], and y is another variable, then f(y) is in R[y] and has
the same coefficients. However, if x and y are different variables, then f(x)
is not considered to be equal to f(y) unless f is a constant polynomial.

Example. Let f ∈ R[x]. Observe that f(x) is just f itself since when we
replace x with x we get what we started with. So f(x) is another way of
writing f . So we can write f as f(x) when we want to emphasize that f is
a polynomial in x.

Example. Here is an amusing example. Suppose f = x3 − x ∈ Z3[x].
Then f(0) = 0, f(1) = 0, and f(2) = 0. So f(a) = 0 for all a ∈ Z3

but f 6= 0. So polynomials cannot be treated as functions when R is finite:
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two distinct polynomials, for example f and 0 as above, can have identical
values. (This shows that for finite fields, polynomials are not exactly the
same thing as functions. The only function Z3 → Z3 whose values are all
zero is the zero function. In fact two functions are said to be equal if and
only if they have the same values. In contrast, we have found two distinct
polynomials whose values are zero.)

Definition 3 (Root of a polynomial). Let f ∈ R[x] and a ∈ R. If f(a) = 0
then a is called a root of f ∈ R[x].

The above example (preceding the definition) shows that every element
of F3 is a root of x3 − x ∈ F3[x].

Exercise 2. Find the roots of x3 − 1 in F7. Find the roots of x3 − 1 in F5.

3. The quotient-remainder theorem for polynomials

Let F be a field. The ring of polynomials F [x] has a quotient-remainder
theorem. To state this theorem we need to discuss a notion of size for F [x],
called the degree:

Definition 4 (Degree). Let f ∈ R[x] where R is a commutative ring. If f
has the form anx

n+ . . .+a1x+a0 with an 6= 0 then the degree of f is defined
to be n and the leading coefficient is defined to be an.

If f = 0 then the degree of f is said to be undefined (some authors give
it degree −∞).

Be careful when using this definition in modular arithmetic. For example,
the polynomial 6x3+2x2−x+1 in F3[x] has only degree 2, and 6x3+2x2−x+1
in F2[x] has degree 1. However, 6x3 + 2x2 − x + 1 in F5[x] has degree 3

You would hope that the degree of fg would be the sum of the degrees
of f and g individually. However, examples such as

(2x2 + 3x + 1)(3x2 + 2) = 3x3 + x2 + 2.

in Z6[x] spoil our optimism. However, if the coefficients are in a field F then
it works.

Theorem 2 (Additivity of degree). If f, g ∈ F [x] are non-zero polynomials
where F is a field, then

deg(fg) = deg f + deg g.

Informal Exercise 3. Justify the above theorem. Explain why the proof
does not work if the coefficients are in Zm where m is composite. Hint: focus
on the leading coefficients.

As mentioned above, the degree of a polynomial is a measure of size.
When we divide we want the size of the remainder to be smaller than the
size of the quotient. This leads to the following:
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Theorem 3 (Quotient-remainder theorem). Let f, g ∈ F [x] be polynomials
where F is a field. Assume g is not zero. Then there are unique poly-
nomials q(x) and r(x) such that (i) f(x) = q(x)g(x) + r(x), and (ii) the
polynomial r(x) is either the zero polynomial or has degree strictly smaller
than g(x).

Remark 2. The polynomial q(x) in the above is called the quotient and the
polynomial r(x) is called the remainder.

Remark 3. This theorem extends to polynomials in R[x] where R is a com-
mutative ring that is not a field, as long as we add the extra assumption
that the leading coefficient of g is a unit in R.

Remark 4. This theorem can be used a basis to prove theorems about GCDs
and unique factorization in F [x].

As an important special case of the above theorem, consider g(x) = x−a
where a ∈ R. Then the remainder r(x) must be zero, or have degree zero.
So r = r(x) is a constant polynomial. What is this constant? To find out,
write f(x) = q(x)(x− a) + r. When we substitute x = a we get

f(a) = q(a)(a− a) + r = 0 + r = r.

In other words, r = f(a). This gives the following:

Corollary 4. Let a ∈ F where F is a field, and let f ∈ F [x]. Then there is
a unique polynomial q ∈ F [x] such that

f(x) = (x− a)q(x) + f(a).

Remark 5. This actually works for commutative rings as well as for fields F
since the leading coefficient of g(x) = x− a is 1 which is always a unit.

The following is a special case of the above corollary (where f(a) = 0).

Corollary 5. Let a ∈ F where F is a field, and let f ∈ F [x]. Then a is a
root of f if and only if (x− a) divides f .

4. The number of roots

Theorem 6. Let f ∈ F [x] be a nonzero polynomial with coefficients in a
field F . Then f has at most n = deg f roots in F .

Proof. This is proved by induction. Let S be the set of natural numbers n
such that every polynomial f that has degree n has at most n roots in F .
Our goal is to show that S = N.

Showing 0 ∈ S is easy. If f is a non-zero constant polynomial of degree 0,
then it has 0 roots since it is a nonzero constant polynomial.

Suppose that k ∈ S. We want to show k + 1 ∈ S. To do so, let f be a
polynomial of degree k+ 1. If f has no roots, then the statement is trivially
true. Suppose that f does have a root a ∈ F . Then, by Corollary 5,

f(x) = q(x)(x− a).
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By Theorem 2, deg f = 1 + deg q. In other words, deg q = k. By the
inductive hypothesis k ∈ S, the polynomial q has at most k roots.

We will now show that the only possible root of f that is not a root of q
is a (but a could also be a root of q). Suppose that f has a root b 6= a.
Then 0 = f(b) = q(b)(b− a). Since b− a 6= 0, we can multiply both sides by
the inverse: 0(b− a)−1 = q(b)(b− a)(b− a)−1. Thus 0 = q(b). So every root
of f not equal to a must be a root of q(x). Since q(x) has at most k roots,
it follows that f(x) must have at most k + 1 roots. So k + 1 ∈ S.

By the principle of mathematical induction, N = S. The result follows.
�

Remark 6. Observe how this can fail if F is replaced by the ring Zm where m
is not a prime. The polynomial x2 − 1 ∈ Z8[x] has degree 2, yet it has four
roots! (Can you find them?)

Exercise 4. Find all four roots of x2 − 1 ∈ Z8[x] in Z8.

Exercise 5. Show that if f, g ∈ F [x] are non-zero polynomials where F is
a field, then the set of roots of fg is the union of the set of roots of f with
the set of roots of g.

Exercise 6. Show that the result of the above exercise does not hold in Z8[x]
by looking at a factorization of x2 − 1.

Exercise 7. Although the result of Exercise 5 does not hold if F is replaced
by a commutative ring with zero divisors (such as Zm where m is composite),
one of the two inclusions does hold. Which one and why?

5. Irreducible polynomials

One can prove unique factorization into irreducible polynomials for F [x].
A polynomial f ∈ F [x] is said to be irreducible if it is not a constant and
if it has no divisors g with 0 < deg g < deg f . These polynomials play the
role of prime numbers in polynomial rings. One can use the methods of
Chapter 5 to prove that every nonconstant polynomial is the product of a
constant times one or more irreducible polynomials.

Finally, even if F is finite, one can prove that there are an infinite number
of irreducible polynomials in F [x] using a similar argument to that used in
showing that there are an infinite number of primes.

Exercise 8. Show that every linear polynomial is irreducible. (We will see
that in C, these are the only irreducible polynomials).

Exercise 9. Show that a quadratic polynomial f ∈ F [x] with no roots in F
must be irreducible. Show that, because of this, x2+1 is irreducible in F3[x].

6. Fundamental theorem of algebra

One of the great advantages of using the field C is that every nonconstant
polynomial has a root. This is called the fundamental theorem of algebra.
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Theorem 7 (Fundamental theorem of algebra, part 1). Every nonconstant
polynomial in C[X] has a root in C.

Corollary 8. Every non-constant polynomial with real or complex coeffi-
cients has a root in C.

Corollary 9 (Fundamental theorem of algebra, part 2). Every non-constant
polynomial in C[x] is the product of linear polynomials in C[x].

For real roots we get the following weaker results (which can be proved
using the intermediate value theorem):

Theorem 10. Every polynomial of odd degree in R[x] has a root in R.

Real polynomials do not always factor into linear real polynomials. The
following weaker result is true:

Theorem 11. Every non-constant polynomial in R[x] factors into a product
of linear and irreducible quadratic polynomials in R[x]

In other words, we have to allow for the possibility of quadratic factors
that have no real roots. The irreducible polynomials of R[x] are the linear
polynomials and the quadratic polynomials with no real roots.1 Contrast
this with C[x] where the irreducible polynomials are just the linear polyno-
mials.

In Q[x] the situation is even worse. We can find polynomials of any degree
that have no roots in Q, and we can find polynomials of any degree that are
irreducible, and do not factor into smaller degree factors.

Exercise 10. Show that the only irreducible polynomials in C[x] are the
linear polynomials.

Exercise 11. Factor x4−1 into irreducible polynomials in C[x]. Factor x4−1
into irreducible polynomials in R[x].

Exercise 12. Assume the fundamental theorem of algebra, Part 1. Prove
from this the fundamental theorem of algebra, part 2. (Use induction based
on degree. Start with degree 1).

1Irreducible quadratic polynomials in R[x] are those for which the quadratic formula
requires square roots of negative numbers. In this case the polynomial has two complex
roots, and the roots are complex conjugates of each other.


