THE QUOTIENT-REMAINDER THEOREM

MATH 372. FALL 2005. INSTRUCTOR: PROFESSOR AITKEN

Theorem 1. Given integers $a \in \mathbb{Z}$ and $b \in \mathbb{N}_{1}$ there are unique integers q and r such that (i) $a=q b+r$, and (ii) $0 \leq r<b$.

Remark. The integer q in the above is called the quotient and the integer r is called the remainder.

Remark. Recall that \mathbb{N}_{1} is the set $\{1,2,3,4,5, \ldots\}$. The above theorem generalizes to negative b, but we will only need it for positive b.

The general strategy (of the existence part) of the proof is to find a multiple of b, not greater than a, that is as close to a as possible. We use the boundedness principle on a set of multiples to find the desired multiple $q b$ of b.

Proof. Let S be the set of multiples of b which are less than or equal to a :

$$
S \stackrel{\text { def }}{=}\{n b \mid n b \leq a, n \in \mathbb{Z}\} .
$$

We want a maximum element in S, but to use the boundedness principle to get such a maximum we need to verify that (i) S is bounded from above, and (ii) S is non-empty. The first is easy: S is bounded from above by a by definition of S. For the second: note that if $a \geq 0$ then $0 \in S$ since 0 is a multiple of b. So in this case S is non-empty. If $a<0$ then $a b \in S$. To see this observe that $b \geq 1$ so $a b \leq a$. So in this case S is also non-empty.

Let $q b$ be the maximum of S which exists by the boundedness principle. Define r to be the "gap": $r \stackrel{\text { def }}{=} a-q b$. Thus $a=q b+r$. Since $q b \leq a$ we know that $r \geq 0$.

We still need to show that $r<b$. Suppose otherwise: $r \geq b$. Then $a-q b \geq b$. In this case, $a \geq q b+b$, and $q b+b>q b$ since b is positive. Thus $a \geq(q+1) b>q b$, which implies $(q+1) b \in S$ is larger than $b q$. This contradicts the maximality of $q b$. Therefore, $r<b$.

We still need to show uniqueness. Suppose q^{\prime} and r^{\prime} also satisfy the desired conditions: (i) $a=q^{\prime} b+r^{\prime}$, and (ii) $0 \leq r^{\prime}<b$.

To show $r=r^{\prime}$, suppose otherwise that $r \neq r^{\prime}$. We consider the case where $r>r^{\prime}$: the case where $r<r^{\prime}$ is similar. From the equation $a=q b+r=q^{\prime} b+r^{\prime}$ we get the equation $r-r^{\prime}=\left(q^{\prime}-q\right) b$. Since $r-r^{\prime}>0$ and $b>0$ it follows that $q^{\prime}-q>0$. From a previous exercise we know that if x, y, z are positive integers with $z=x y$ then $y \leq z$. So, since $r-r^{\prime}=\left(q^{\prime}-q\right) b$, we conclude that $b \leq\left(r-r^{\prime}\right)$. By assumption, $r<b$. Since, $-r^{\prime} \leq 0$ we also know that $r-r^{\prime} \leq r$. Thus $r-r^{\prime}<b$ contradicting $b \leq r-r^{\prime}$. So $r=r^{\prime}$.

As before, from $a=q b+r=q^{\prime} b+r^{\prime}$ we get the equation $r-r^{\prime}=\left(q^{\prime}-q\right) b$. Since $r=r^{\prime}$ we have that $\left(q^{\prime}-q\right) b=0$. Since $b \neq 0$ it follows that $\left(q^{\prime}-q\right)=0$. Thus $q=q^{\prime}$. This completes the proof of uniqueness.

Date: Fall 2005. Version of October 1, 2005.

I deliberately made this proof long-winded to make it easier to follow. You need to be long-winded at first until you become proficient in proofs. In more advanced textbooks and papers, one finds a more condensed style. For example, here is a shorter version of the above:
Proof. Consider $S \stackrel{\text { def }}{=}\{n b \mid n b \leq a, n \in \mathbb{Z}\}$. This set is non-empty: if $a \geq 0$ then $0 \in S$ and if $a<0$ then $a b \in S$ (since $a b \leq a$ because b is positive). Since this non-empty set is bounded above by a, it has a maximum element $q b$. Let r be $a-q b$. Thus $a=q b+r$.

Obviously $r \geq 0$. To show that $r<b$, suppose otherwise. Then $a-q b=r \geq b$ so $a \geq q b+b$. Thus $(q+1) b \in S$, contradicting the maximality of $q b$.

For uniqueness, suppose q^{\prime} and r^{\prime} also satisfy the desired conditions. Suppose $r \neq r^{\prime}$. We can assume $r>r^{\prime}$. From $a=q b+r=q^{\prime} b+r^{\prime}$ we get the $r-r^{\prime}=\left(q^{\prime}-q\right) b$. Since $r-r^{\prime}$ is a positive multiple of b we get $b \leq r-r^{\prime}$. However $r-r^{\prime} \leq r<b$. Contradiction.

Since $r=r^{\prime}$ it follows that $q b=q^{\prime} b$. Since $b>0, q=q^{\prime}$.
Dr. Wayne Aitken, Cal. State, San Marcos, CA 92096, USA
E-mail address: waitken@csusm.edu

