
THE QUOTIENT-REMAINDER THEOREM

MATH 372. FALL 2005. INSTRUCTOR: PROFESSOR AITKEN

Theorem 1. Given integers a ∈ Z and b ∈ N1 there are unique integers q and r such that
(i) a = qb + r, and (ii) 0 ≤ r < b.

Remark. The integer q in the above is called the quotient and the integer r is called the
remainder.

Remark. Recall that N1 is the set {1, 2, 3, 4, 5, . . .}. The above theorem generalizes to nega-
tive b, but we will only need it for positive b.

The general strategy (of the existence part) of the proof is to find a multiple of b, not
greater than a, that is as close to a as possible. We use the boundedness principle on a set
of multiples to find the desired multiple qb of b.

Proof. Let S be the set of multiples of b which are less than or equal to a:

S
def
= {nb | nb ≤ a, n ∈ Z}.

We want a maximum element in S, but to use the boundedness principle to get such a
maximum we need to verify that (i) S is bounded from above, and (ii) S is non-empty. The
first is easy: S is bounded from above by a by definition of S. For the second: note that if
a ≥ 0 then 0 ∈ S since 0 is a multiple of b. So in this case S is non-empty. If a < 0 then
ab ∈ S. To see this observe that b ≥ 1 so ab ≤ a. So in this case S is also non-empty.

Let qb be the maximum of S which exists by the boundedness principle. Define r to be

the “gap”: r
def
= a− qb. Thus a = qb + r. Since qb ≤ a we know that r ≥ 0.

We still need to show that r < b. Suppose otherwise: r ≥ b. Then a − qb ≥ b. In this
case, a ≥ qb + b, and qb + b > qb since b is positive. Thus a ≥ (q + 1)b > qb, which implies
(q + 1)b ∈ S is larger than bq. This contradicts the maximality of qb. Therefore, r < b.

We still need to show uniqueness. Suppose q′ and r′ also satisfy the desired conditions:
(i) a = q′b + r′, and (ii) 0 ≤ r′ < b.

To show r = r′, suppose otherwise that r 6= r′. We consider the case where r > r′: the
case where r < r′ is similar. From the equation a = qb + r = q′b + r′ we get the equation
r − r′ = (q′ − q)b. Since r − r′ > 0 and b > 0 it follows that q′ − q > 0. From a previous
exercise we know that if x, y, z are positive integers with z = xy then y ≤ z. So, since
r − r′ = (q′ − q)b, we conclude that b ≤ (r − r′). By assumption, r < b. Since, −r′ ≤ 0 we
also know that r − r′ ≤ r. Thus r − r′ < b contradicting b ≤ r − r′. So r = r′.

As before, from a = qb+ r = q′b+ r′ we get the equation r− r′ = (q′− q)b. Since r = r′ we
have that (q′ − q)b = 0. Since b 6= 0 it follows that (q′ − q) = 0. Thus q = q′. This completes
the proof of uniqueness. �
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I deliberately made this proof long-winded to make it easier to follow. You need to be
long-winded at first until you become proficient in proofs. In more advanced textbooks and
papers, one finds a more condensed style. For example, here is a shorter version of the above:

Proof. Consider S
def
= {nb | nb ≤ a, n ∈ Z}. This set is non-empty: if a ≥ 0 then 0 ∈ S

and if a < 0 then ab ∈ S (since ab ≤ a because b is positive). Since this non-empty set is
bounded above by a, it has a maximum element qb. Let r be a− qb. Thus a = qb + r.

Obviously r ≥ 0. To show that r < b, suppose otherwise. Then a − qb = r ≥ b so
a ≥ qb + b. Thus (q + 1)b ∈ S, contradicting the maximality of qb.

For uniqueness, suppose q′ and r′ also satisfy the desired conditions. Suppose r 6= r′. We
can assume r > r′. From a = qb + r = q′b + r′ we get the r− r′ = (q′ − q)b. Since r− r′ is a
positive multiple of b we get b ≤ r − r′. However r − r′ ≤ r < b. Contradiction.

Since r = r′ it follows that qb = q′b. Since b > 0, q = q′. �
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