THE QUOTIENT-REMAINDER THEOREM

MATH 372. FALL 2005. INSTRUCTOR: PROFESSOR AITKEN

Theorem 1. Given integers $a \in \mathbb{Z}$ and $b \in \mathbb{N}_1$ there are unique integers q and r such that (i) a = qb + r, and (ii) $0 \le r < b$.

Remark. The integer q in the above is called the *quotient* and the integer r is called the *remainder*.

Remark. Recall that \mathbb{N}_1 is the set $\{1, 2, 3, 4, 5, \ldots\}$. The above theorem generalizes to negative *b*, but we will only need it for positive *b*.

The general strategy (of the existence part) of the proof is to find a multiple of b, not greater than a, that is as close to a as possible. We use the boundedness principle on a set of multiples to find the desired multiple qb of b.

Proof. Let S be the set of multiples of b which are less than or equal to a:

$$S \stackrel{\text{def}}{=} \{ nb \mid nb \le a, \ n \in \mathbb{Z} \}.$$

We want a maximum element in S, but to use the boundedness principle to get such a maximum we need to verify that (i) S is bounded from above, and (ii) S is non-empty. The first is easy: S is bounded from above by a by definition of S. For the second: note that if $a \ge 0$ then $0 \in S$ since 0 is a multiple of b. So in this case S is non-empty. If a < 0 then $ab \in S$. To see this observe that $b \ge 1$ so $ab \le a$. So in this case S is also non-empty.

Let qb be the maximum of S which exists by the boundedness principle. Define r to be the "gap": $r \stackrel{\text{def}}{=} a - qb$. Thus a = qb + r. Since $qb \leq a$ we know that $r \geq 0$.

We still need to show that r < b. Suppose otherwise: $r \ge b$. Then $a - qb \ge b$. In this case, $a \ge qb + b$, and qb + b > qb since b is positive. Thus $a \ge (q + 1)b > qb$, which implies $(q + 1)b \in S$ is larger than bq. This contradicts the maximality of qb. Therefore, r < b.

We still need to show uniqueness. Suppose q' and r' also satisfy the desired conditions: (i) a = q'b + r', and (ii) $0 \le r' < b$.

To show r = r', suppose otherwise that $r \neq r'$. We consider the case where r > r': the case where r < r' is similar. From the equation a = qb + r = q'b + r' we get the equation r - r' = (q' - q)b. Since r - r' > 0 and b > 0 it follows that q' - q > 0. From a previous exercise we know that if x, y, z are positive integers with z = xy then $y \leq z$. So, since r - r' = (q' - q)b, we conclude that $b \leq (r - r')$. By assumption, r < b. Since, $-r' \leq 0$ we also know that $r - r' \leq r$. Thus r - r' < b contradicting $b \leq r - r'$. So r = r'.

As before, from a = qb + r = q'b + r' we get the equation r - r' = (q' - q)b. Since r = r' we have that (q' - q)b = 0. Since $b \neq 0$ it follows that (q' - q) = 0. Thus q = q'. This completes the proof of uniqueness.

Date: Fall 2005. Version of October 1, 2005.

I deliberately made this proof long-winded to make it easier to follow. You need to be long-winded at first until you become proficient in proofs. In more advanced textbooks and papers, one finds a more condensed style. For example, here is a shorter version of the above:

Proof. Consider $S \stackrel{\text{def}}{=} \{nb \mid nb \leq a, n \in \mathbb{Z}\}$. This set is non-empty: if $a \geq 0$ then $0 \in S$ and if a < 0 then $ab \in S$ (since $ab \leq a$ because b is positive). Since this non-empty set is bounded above by a, it has a maximum element qb. Let r be a - qb. Thus a = qb + r.

Obviously $r \ge 0$. To show that r < b, suppose otherwise. Then $a - qb = r \ge b$ so $a \ge qb + b$. Thus $(q + 1)b \in S$, contradicting the maximality of qb.

For uniqueness, suppose q' and r' also satisfy the desired conditions. Suppose $r \neq r'$. We can assume r > r'. From a = qb + r = q'b + r' we get the r - r' = (q' - q)b. Since r - r' is a positive multiple of b we get $b \leq r - r'$. However $r - r' \leq r < b$. Contradiction.

Since r = r' it follows that qb = q'b. Since b > 0, q = q'.

DR. WAYNE AITKEN, CAL. STATE, SAN MARCOS, CA 92096, USA *E-mail address:* waitken@csusm.edu