
CYCLIC UNIT GROUPS

MATH 372. FALL 2005. INSTRUCTOR: PROFESSOR AITKEN

The goal of this handout is to prove that if p is a prime, then the unit group Up ={
1, 2, . . . , p− 1

}
is a cyclic group. Its generators are called primitive elements.

1. Orders

Let Um be the unit group modulo m.

Definition 1. The order of an element a ∈ Um is defined to be the smallest positive integer k
such that ak = 1. Such integers exist since aϕ(n) = 1 by Euler’s Theorem, so there is a smallest
such integer.

Remark. There are two order concepts used in this class, and they are much different. One
concerns the power of p occurring in a ∈ Z, while the other concerns a ∈ Um. So when we
are talking about units in Um you can be sure that we mean Definition 1. Definition 1 is
used in more generally in group theory.

Proposition 1. Let a ∈ Um have order k. Then an = 1 if and only if k | n. (This is valid
for any n ∈ Z, not just n > 0).

Proof. First suppose an = 1. Write n = qk + r where 0 ≤ r < k. Then

1 = (a)n = (a)qk+r = (a)qk(a)r = (ak)
q
(a)r = 1

q
ar = ar.

But k is defined as the smallest positive integer with the desired property. So r = 0. Thus
k divides n.

Now suppose k | n. Then n = qk for some q. So an = (ak)q = 1
q

= 1. �

By Euler’s Theorem we get the following.

Corollary 1. Let a ∈ Um have order k. Then k | ϕ(m).

If an element a ∈ Um has order exactly ϕ(m) then we say that a is a generator or primitive
element modulo m, and Um is called a cyclic group.

Proposition 2. Let a ∈ Um have order k. Then as = at if and only if s ≡ t mod k.

Proof. If as = at then as−t = 1. Then k | s− t by Proposition 1. So s ≡ t mod k.
Conversely, if s ≡ t mod k then k | s − t. So as−t = 1 by Proposition 1. Multiply both

sides of the equation by at. This results in as = at. �
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2. An Application

In class we proved the following:

Theorem 1. Let a/b be a rational number in lowest terms with (b, 10) = 1 and b > 1. Then
the decimal expansion of a/b is periodic (after the decimal point) with period equal to the
order of 10 in Ub.

Remark. The element 10 occurs because we use base 10. We could generalize the above to
base B by changing 10 to B, and by making other obvious changes.

This theorem generalizes to denominators with (b, 10) > 1.

Theorem 2. Let a/b be a rational number in lowest terms with positive b. Write b = 2s5tb0

where (b0, 10) = 1. If b0 = 1 then a/b has a finite decimal expansion. If b0 > 1 then the
decimal expansion of a/b is periodic (after some digit) with period equal to the order of 10
in Ub0.

3. Some Basic Facts

Let Um be the unit group modulo m. Below are some basic facts about orders of elements
of Um. Actually these results apply to any Abelian group.

Proposition 3. If a ∈ Um has order k, and if d | k, then ad has order k/d.

Proof. Let k′ be the order of ad. Observe that 1 = (ad)
k′

= (a)k′d. Since k is the order of a,
this implies that k ≤ k′d. So k′ ≥ k/d.

Observe that (ad)
k/d

= ak = 1. So k′ ≤ k/d since k′ is the order of ad. Thus k′ = k/d. �

Proposition 4. Suppose a ∈ Um has order k1 and b ∈ Um has order k2. If (k1, k2) = 1 then
ab has order k1k2

Proof. Let k be the order of ab. First observe that(
ab

)k1k2
= (a)k1k2

(
b
)k1k2

=
(
ak1

)k2
(
b
k2

)k1

=
(
1
)k2

(
1
)k1 = 1.

By Proposition 1, k|k1k2.
Now observe that(

ab
)k1k

= (a)k1k(b)k1k
=

(
ak1

)k(
b
)k1k

=
(
1
)k2

(
b
)k1k

=
(
b
)k1k

and (
ab

)k1k
=

(
ab

k
)k1

= 1
k1 = 1.

So
(
b
)k1k

= 1. Again, by Proposition 1, k2 | k1k. Since (k1, k2) = 1, it follows that k2 | k.
By a similar argument k1 | k.

Since k1 | k and k2 | k, and since (k1, k2) = 1, it follows that k1k2|k.
Since k1k2 | k and k | k1k2, it follows that k = k1k2. �

Remark. Bezout’s Identity can be used to prove that if k2 | k1k and (k1, k2) = 1, then k2 | k.
See the handout on the Chinese Remainder Theorem for the proof that that k1 | k and

k2 | k, together with (k1, k2) = 1, imply k1k2 | k.
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Proposition 5. Suppose a1, . . . , ar ∈ Um have orders n1, . . . , nr respectively. Suppose also
that the ni are pairwise relatively prime. Then a1 · · · ar has order n1 · · ·nr.

Proof. This follows from Proposition 4 with the use of a short induction proof (in r). I will
leave the details to you. �

4. The Primitive Element Theorem

Lemma 1. Let p > 2 be a prime, and let p − 1 = qe1
1 · · · qer

r be the prime factorization of
p − 1 into powers of distinct primes. Then the order of each element a ∈ Up is qc1

1 · · · qcr
r

where ci ≤ ei for each i.

Proof. This follows from Corollary 1. �

Lemma 2. Let p > 2 be a prime, and let p − 1 = qe1
1 · · · qer

r be the prime factorization of
p−1 into powers of distinct primes. Then for each i there is an element ai ∈ Up whose order
is a multiple of qei

i .

Proof. We prove this for i = 1, the argument for general i is similar. So suppose the lemma
fails for i = 1. Then every element of Up has order qc1

1 · · · qcr
r with c1 ≤ e1 − 1 and cj ≤ ej

for j > 1. In other words, every element has order dividing (p − 1)/q1 = qe1−1
1 · · · qer

r . Let
d = (p−1)/q1. Then every element of Up is a root of xd−1. However, by Lagrange’s theorem
on roots of polynomials, there are at most d roots. This is a contradiction since Up has p− 1
elements and p− 1 > d. �

Lemma 3. Let p > 2 be a prime, and let p − 1 = qe1
1 · · · qer

r be the prime factorization of
p−1 into powers of distinct primes. Then for each i there is an element ai ∈ Up of order qei

i .

Proof. By the previous lemma there is an element bi ∈ Up of order qei
i k for some k. Let

ai = bi
k
. By Proposition 3, ai has order qe1

1 . �

Theorem 3. Let p be a prime. Then Up has an element of order ϕ(p) = p− 1.

Proof. If p = 2 then the result is trivial. So we can assume that p > 2. Let p−1 = qe1
1 · · · qer

r

be the prime factorization of p − 1 into powers of distinct primes. By the previous lemma
there is, for each i, an element ai ∈ Up of order qei

i . By Proposition 5 the element a1 · · · ar

has order p− 1. �

Definition 2. An element of Um of order ϕ(m) is called a generator or primitive element.
The above theorem says that if m = p is a prime then there are primitive elements. This
theorem generalizes to other m including powers of primes p > 2. However, many Um do not
have primitive elements. For example, every element of U8 has order 1 or 2, but ϕ(8) = 4.
So U8 has no primitive element.

The following theorem justifies the term generator.

Theorem 4. If a is a primitive element of Um then every element of Um is a power of a.
In fact,

Um =
{

a0, a1, a2, . . . aϕ(m)−1
}

.
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Proof. Let a be a primitive element of Um. In other words a has order ϕ(m). Suppose
that two elements on the list a0, a1, a2, . . . aϕ(m)−1 are equal: ai = aj. By Proposition 2, this
implies that i ≡ j mod ϕ(m) which cannot happen since i and j are between 0 and ϕ(m)−1.

Thus a0, a1, a2, . . . aϕ(m)−1 gives us ϕ(m) distinct elements of Um. Recall that Um only has
ϕ(m) elements, so this list gives us all elements of Um. �

Definition 3. If Um has a primitive element (or generator), then we say that Um is a cyclic
group.

Remark. By Theorem 3, Up is cyclic if p is a prime. However, U8 is not cyclic.

Remark. The term cyclic refers to the fact that powers of the generator a cycles through all
the elements of the group.

Remark. The term cyclic group applies to any finite group such that powers of a designated
element give all elements of the group.

To summarize,

Theorem 5. If p is a prime, then Up is a cyclic group. There is at least one element (usually
several) a ∈ Up that has order p− 1. For any such element

Up =
{

a0, a1, a2, . . . ap−2
}

so every element of Up is a power of a.
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