QUADRATIC RESIDUES

MATH 372. FALL 2005. INSTRUCTOR: PROFESSOR AITKEN

When is an integer a square modulo p? When does a quadratic equation have roots
modulo p? These are the questions that will concern us in this handout.

1. THE LEGENDRE SYMBOL

Definition 1. Let @ € F, where p is an odd prime. We call @ a square if there is an element

be [F, such that @ = 5. Non-zero squares are also called quadratic residues.

The set of quadratic residues is written (U,)? or Q,. We will see later that (U,)? is closed
under multiplication (in other words, it is a subgroup of U,).
Remark. Observe that @ is a quadratic residue if and only if there is a non-zero b such that
v =a.

(One direction is easy: if @ is a quadratic residue, then by definition it is a non-zero square.
So there is a b such that 5’ —a. This b cannot be zero since @ is not zero.

The other direction is not too bad: if @ = b~ where b is not zero, then @ is a square. Now
@ is non-zero: otherwise b would be a zero divisor, but we know that the field F, has no zero
divisors. So @ is a quadratic residue.)

Definition 2. Let a € Z, and let p be an odd prime. Then the Legendre symbol <%> is
defined to be 0,+1, or —1.

The Legendre symbol (%) is defined to be 0 when @ = 0 in F,,. In other words, it is 0 if
and only if p | a.

The Legendre symbol <%> is defined to be +1 when @ is a quadratic residue. In other
words, it is +1 if and only if @ € (U,)?.

The Legendre symbol (5> is defined to be —1 in any other case. In other words, it is —1

if and only if @ is in U, but not in (U,)>.

Exercise 1. Calculate (%) for all 0 < a < 11 directly from the definition (without using
the properties below).

a
p

Lemma 1. Let p be an odd prime. If ( ) = +1 then (a)P~V/2 =T1.

Proof. The hypothesis implies that a = b” for some b € Up. Then
gP—D/2 — <B2>(p_1)/2 _ Bp—l -1
by Fermat’s Little Theorem. 0
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The contrapositive gives the following:
Corollary 1. Let p be an odd prime. If (@)P~V/2 £71 then a ¢ (U,)?%.

Lemma 2. Let p be an odd prime. Let g be a primitive element of U,. Then g2 = 1.
(So by the above corollary, G is not a quadratic residue).

Proof. Recall that g has order p — 1 since it is a generator. Let @ = g®»~Y/2. So

Since @* = 1, the element @ is a root of > — 1. From an earlier result, this implies that
@is 1 or —1. However, @ = g® /2 is not 1 since the order of § is p — 1 which is greater

than (p —1)/2. O

Remark. Recall that every element of U, is a power of a primitive element g. In fact,
Up=19".9"....9%}.

Thus half of the elements of U, can be written as g with 0 < k < p— 2 even, and the other
half can be written as g* with 0 < k < p — 2 odd.

Lemma 3. Let p be an odd prime, and let g € U, be a primitive element. If a = g* with k
even, then (%) = +1. Ifa = g" with k odd, then (5)@_1)/2 =—1 and (%) =—1.

Proof. If a = g* with k even, then k = 2l for some [. Thus @ = (ﬁ) So @ is a square. It is
non-zero since it is a unit (powers of g are units). Thus (%)

If @ = g* with k odd then
@2 = (39" = (g ) = (D = -1

using the fact that k is odd together with Lemma 2. Finally, by Corollary 1 we know that

the unit @ is not a quadratic residue, so (%) =—1. O

Corollary 2. Of the p — 1 elements of U,, there are (p — 1)/2 quadratic residues and there
are (p — 1)/2 that are not quadratic residues.

Proof. Recall, U, = {g°,g",...,97%}. In the range 0 < k < p — 2 there are (p — 1)/2 even
values of k and (p — 1)/2 odd values of k. O

Theorem 1. If p is an odd prime and a is an integer, then <%> =alr=/2,

Remark. In the above theorem we are considering (%) as taking values 0,1, —1 € U, instead

of 0,1,—1 € Z. So, technically we should put a big bar over(%).

Proof. There are three cases to consider.

First suppose that <%> = 0. By definition, @ = 0. Thus, a®~1/? = o2 0, and the
result follows.

Next suppose that (%) = +1. Then a» /2 =T by Lemma 1.



Finally, suppose that <%> = —1. Let g be a primitive element of U,,. Since g generates U,
there is a k such that g* = @. By Lemma 3, this k cannot be even. So k is odd. The result

follows from Lemma 3: a®?~1/2 = —T. O
Exercise 2. Calculate (ﬁ) for all 0 < a < 11 using Theorem 1.

2. BASIC PROPERTIES OF THE LEGENDRE SYMBOL

Here are some very useful properties to know in order to calculate <%> Throughout this

section, let p be an odd prime.

Property 1. If a = 0 mod p then <%> = 0. In particular, <§> =0.

Proof. This follows straight from the definition. 0J
Property 2. If a # 0 mod p and a € Z s a square, then (%) = 1. In particular, (%) = 1.
Proof. If a is a square, then @ is a square modulo p. So (%) =1 since @ # 0. U
Property 3. (‘71) = (=1)®=Y/2 " In particular:

If p=1mod 4, then (%) =1.

If p=3mod4, then (f)
Proof. The first equation follows from Theorem 1. 2If = mod 4, then p — 1 = 4k for

some k. Thus (p — 1)/2 = 2k. In this case (—1)®~V (— )2
If p =3 mod 4, then p — 3 = 4k for some k. Thus p—1 = 4k+2 and( —1)/2=2k+1.
In this case (—1)P~D/2 = (—1)2k+1 = 1, 0

Property 4. For a,b € Z we have <
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Proof. This follows from Theorem 1:

<“_b> — (ab)e-/2 = ge-n/2 P2 <2> <§> .
p p) \p

O
Property 5. If a = r mod p then <%> = (g)
Proof. If a = r mod p then @ = 7. By Definition 1, @ = 7 clearly implies (%) = (g) U

Exercise 3. Use Property 4 to show that the product of two quadratic residues is a quadratic
residue. Thus the set (U,)? of quadratic residues is closed under multiplication. (In fact, it
is a subgroup of U,,.)

Exercise 4. Use Property 4 to show that if @,b € U, are units such that one of them is a
quadratic residue but the other is not, then ab is not a quadratic residue.
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Exercise 5. Use Property 4 to show that if @,b € U, are units that are both non-quadratic
residues, then ab is a quadratic residue.

Remark. For those of you who have taken abstract algebra, observe that Property 4 tells

a

us that the map a — <5> is a group homomorphism U, — {#1}. The kernel of this

homomorphism is the subgroup (U,)? of quadratic residues. The quadratic residues form a
subgroup, but the non-quadratic residues only form a coset.

Exercise 6. Give a multiplication table for (U;;)%. Hint: it should have 5 rows and columns.

3. ADVANCED PROPERTIES OF THE LEGENDRE SYMBOL

The proofs of the properties of this section will be postponed.

Property 6. Let p be an odd prime, then (f—)) 15 determained by what p s modulo 8.
Ifp=1lorp=7 mod8, then (%) =1.

Ifp=3o0orp=5 modS8, then <%) =—1.
The following is a celebrated theorem of Gauss.

Property 7 (Quadratic Reciprocity). Let p and q be distinct odd primes. Then

(@)= 2).

Remark. As we discussed above, ’%1 is even if p = 1 mod 4, but is odd if p = 3 mod 4.
Similarly, for ¢q. So ’%1 : Q;QI is even if either p or ¢ is congruent to 1 modulo 4, but is odd if

both are congruent to 3. So

Ifp=1lorgq=1 mod 4, then<§>:<g>.
If p=3and ¢ =3 mod 4, then(§>:—<%>.

4. SQUARE ROOTS
If 5" =ain I, then b is called a square root of a.
Lemma 4. Let p be an odd prime. If b is not zero, then b # —b.

Proof. Suppose otherwise, that é = b = (=1)b. Since b is a unit, it has a multiplicative
inverse. Multiply both sides of b = (—1)b by b~!. This gives 1 = —1. So 1 = —1 mod p.
This means that p divides 1 — (—1) = 2. However, p > 2, a contradiction. d

Proposition 1. Let p be an odd prime. If @ has a square root b, then —b is also a square
root. Furthermore, +b are the only square roots of @.
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Proof. Since (—b)? = (—1)? b= 52, if b’ = @ then (—=b)? = @. So the first statement follows.

Now we must show that £b are the only square roots of @. First assume b # 0. Then by
Lemma 4, +b are two distinct solutions to 22 = @. However, the polynomial 22 — @ has at
most two roots by Lagrange’s theorem. Thus 22 = @ has no other solutions. In other words,
there are no other square roots.

Finally, consider the case where b =0, so —b = 0 and @ = 0 as well. Now if ¢ is a non-zero
square root of @ = 0 then it is a zero divisor. Zero divisors do not exist in F, since it is a
field. So b = 0 is the only square root. O

Proposition 2. Let p be an odd prime. Then the number of square roots of @ in I, is given
by the formula (%) + 1.

a
p

Proof. There are three cases.

CASE (%) = 0. By definition, @ = 0, which has 0 for a square root. By Proposition 1

the square roots are £0. So 0 is the unique square root: there is exactly one square root.
Observe that (%) +1=0+41 =1 gives the correct answer in this case.

CASE (%) = 1. By definition, @ is a non-zero square, so it has a square root b in F,. Clearly
b is non-zero (otherwise @ would be 62, but @ is non-zero). By Proposition 1 and Lemma 4
there is exactly one other square root, namely —b. So there are two square roots. Observe

that (£) +1=1+1= 2 gives the correct answer in this case.
CASE (%) = —1. By definition, @ is not a square in [F,. So there are no roots. Observe that
(3) +1=—141=0 gives the correct answer in this case. O

Exercise 7. Find all the square roots of all the elements of F1;. For more practice try Fr
or IF5.

Exercise 8. For which primes p is it true that —1 has a square root? Find the first eight

primes with this property. For a few of these, find square roots of —1.

5. QUADRATIC EQUATIONS MODULO ODD PRIMES

The previous section considered the roots of 22 —a = 0 (which are called “square roots”).
In this section we consider the general quadratic equation @z? + bz +¢ = 0 in F, with p an
odd prime.

Lemma 5 (Completing the square). Let p be an odd prime, and consider the quadratic
polynomial ax® + bx + ¢ where @ # 0. Then T is a root of this polynomial if and only if
2ar + b is a square root ofl_72 — 4ac.

Proof. Observe that

(2ar +b)* = 4a*r* + 4abr + b* = 4a’r® + dabr + 4ac — dac+b* = da(ar® +br +c) + (b* — dac).

So if ar? 4+ br + ¢ = 0 mod p, then (2ar + b)? = (b* — 4ac) mod p.
Conversely, suppose (2ar + b)* = (b* — 4ac) mod p. So

4a(ar® +br + ¢) = (2ar + b)? — (b* — 4ac) = 0 mod p.
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But a is a unit modulo p by assumption, and p {4 so 4 is also a unit modulo p. Thus we can
cancel the 4a factor in the above equation leaving us with ar? + br + ¢ = 0 mod p. 0

Remark. We call 52 — 4ac the discriminant of ax® + bx + C.

Corollary 3. Let p be an odd prime, and consider the polynomial az? + bx +¢ where @ # 0.
If this polynomial has a root in Fy, then the discriminant has a square root in IF),.

Remark. You might have seen something like the above lemma in the context of deriving the
classical quadratic formula for ' = R or F' = C. In fact, the above lemma is valid in any
field F' such that 1 + 1 # 0. However, it it fails in F' = F.

Theorem 2. Let p be an odd prime, and consider the polynomial az? + bx +¢ where @ # 0.

If this polynomial has at least one root in F), and ifo € F, is a square root of the discrimi-

nant b’ — dac (which exists by the previous corollary), then the roots are given by the formula
(—=b+6)(2a)t. This formula is traditionally written as

—b+/ b - 4ac
2a
Finally, if the discriminant is a square in ), then the polynomial has at least one root.

Proof. According to Lemma 5, if 7 is a root of az? + bx + ¢, then 2ar + b is a square root of
the discriminant. By Proposition 1 the only square roots of the discriminant are 0 and —9.
So either 2ar + b = 6 or 2ar + b = —¢&. Now solve for 7.

Now suppose the discriminant is a square with square root 0. Let 7 be (—b 4 0)(2a)~'.
This implies that 2ar + b = 6. So 7 is a root by Lemma 5. U

Proposition 3. Let p be an odd prime, and consider the polynomial @x* + bx + ¢ where
a # 0. Then the number of roots in F, is given by the following (Legendre Symbol based)

formula:
(b2 - 4ac)
—— | + L
p

CASE <%> = 0. In other words, discriminant is 0, which is obviously a square. So by

Proof. There are three cases.

Theorem 2, the polynomial has at least one root. Observe that 5_:Eis a square root of the
discriminant in this case. So by Theorem 2, the roots are (—b= 6)(2a)~*. Since § = 0, both
possibilities give the same answer: there is exactly one root and it is —b(2a) L

CASE (’P_Tfmﬂ = 1. In other words, the discriminant is a non-zero square. So by Theorem 2,

the polynomial has at least one root. Let § be a square root of the discriminant. Since the
discriminant is non-zero, 6 # 0. So ¢ and —¢ are distinct by Lemma 4. By Theorem 2, the
roots are (— l_)ig) (2a)~!. Claim: these roots are distinct. To see this suppose (—b+0)(2a)~! =
(=b—0)(2a)~'. From thls equation it is easy to derive § = —6, a contradiction. Thus there

are exactly two roots.
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2 . e . .
CASE % = —1. In other words, the discriminant does not have a square root in [F,,.

So by Corollary 3 (contrapositive), there are zero roots. 0

6. ADDITIONAL PRACTICE PROBLEMS

Exercise 9. Compute (%) using the above properties. Likewise, compute (%)

Exercise 10. Use the Legendre symbol to decide if 14 is a square in Fyq;.
Exercise 11. How many roots does 222 + 3z + 4 have in Fa39?

Exercise 12. When is 5 a square modulo p where p is an odd prime? List the first eight
primes where this happens. Check a few of these to see if you can find square roots of 5.
(Hint: the answer depends on what p is modulo 5.)

Exercise 13. When is 7 a square modulo p where p is an odd prime? List the first eight
primes where this happens. Check a few of these to see if you can find square roots of 7.
(Hint: the answer depends on what p is modulo 28. Divide into two cases: p = 1 mod 4 and
p =3 mod 4. Use the Chinese Remainder Theorem.)

Exercise 14. Show that (%) = (%) for all odd primes p. (Hint: divide into three cases.
(i) p=3, (ii) p = 1 mod 4, and (iii) p = 3 mod 4 with p # 3.)

Exercise 15. For what odd primes p are there elements @ and @ + 1 that are multiplicative
inverses to each other? List the first eight primes where this happens. Check a few of these
to see if you can find @. (Hint: show this happens if and only if 22 + x — 1 = 0 has roots.)

Exercise 16. For what odd primes p are there elements @ and b in [F, that are both additive
and multiplicative inverses to each other? List the first eight primes where this happens.
Check a few of these to see if you can find @ and b. (Hint: show this happens if and only if
—2? =1 has solutions.)

Exercise 17. For what odd primes p are there elements @ and b in F, that add to 3 but
multiply to 27

Exercise 18. For what odd primes p are there elements @ and b in F, that add to 2 but
multiply to 37 List the first eight primes where this happens. Check a few of these to see
if you can find @ and b. (Hint: the answer depends on whether —2 is a square modulo p.
Compute the Legendre symbol for each possible value of p modulo 8. Observe that knowing
p modulo 8 gives you knowledge of p modulo 4.)

Exercise 19. For what odd primes p is there a non-zero element in F, whose cube is equal
to 3 times itself? List the first eight primes where this happens. Check a few of these primes
to see if you can find the desired element in F,. (Hint: show this happens if and only if
2?2 = 3 has a solution. Split into three cases: p =3 and p = 1 mod 4 and p = 3 mod 4.)
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