
QUADRATIC RESIDUES

MATH 372. FALL 2005. INSTRUCTOR: PROFESSOR AITKEN

When is an integer a square modulo p? When does a quadratic equation have roots
modulo p? These are the questions that will concern us in this handout.

1. The Legendre Symbol

Definition 1. Let a ∈ Fp where p is an odd prime. We call a a square if there is an element

b ∈ Fp such that a = b
2
. Non-zero squares are also called quadratic residues.

The set of quadratic residues is written (Up)
2 or Qp. We will see later that (Up)

2 is closed
under multiplication (in other words, it is a subgroup of Up).

Remark. Observe that a is a quadratic residue if and only if there is a non-zero b such that

b
2

= a.
(One direction is easy: if a is a quadratic residue, then by definition it is a non-zero square.

So there is a b such that b
2

= a. This b cannot be zero since a is not zero.
The other direction is not too bad: if a = b

2
where b is not zero, then a is a square. Now

a is non-zero: otherwise b would be a zero divisor, but we know that the field Fp has no zero
divisors. So a is a quadratic residue.)

Definition 2. Let a ∈ Z, and let p be an odd prime. Then the Legendre symbol
(

a
p

)
is

defined to be 0, +1, or −1.

The Legendre symbol
(

a
p

)
is defined to be 0 when a = 0 in Fp. In other words, it is 0 if

and only if p | a.

The Legendre symbol
(

a
p

)
is defined to be +1 when a is a quadratic residue. In other

words, it is +1 if and only if a ∈ (Up)
2.

The Legendre symbol
(

a
p

)
is defined to be −1 in any other case. In other words, it is −1

if and only if a is in Up but not in (Up)
2.

Exercise 1. Calculate
(

a
11

)
for all 0 ≤ a < 11 directly from the definition (without using

the properties below).

Lemma 1. Let p be an odd prime. If
(

a
p

)
= +1 then (a)(p−1)/2 = 1.

Proof. The hypothesis implies that a = b
2

for some b ∈ Up. Then

a(p−1)/2 =
(
b
2
)(p−1)/2

= b
p−1

= 1

by Fermat’s Little Theorem. �
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The contrapositive gives the following:

Corollary 1. Let p be an odd prime. If (a)(p−1)/2 6= 1 then a 6∈ (Up)
2.

Lemma 2. Let p be an odd prime. Let g be a primitive element of Up. Then g(p−1)/2 = −1.
(So by the above corollary, g is not a quadratic residue).

Proof. Recall that g has order p− 1 since it is a generator. Let a = g(p−1)/2. So

a2 = (g(p−1)/2)2 = gp−1 = 1.

Since a2 = 1, the element a is a root of x2 − 1. From an earlier result, this implies that
a is 1 or −1. However, a = g(p−1)/2 is not 1 since the order of g is p − 1 which is greater
than (p− 1)/2. �

Remark. Recall that every element of Up is a power of a primitive element g. In fact,

Up =
{
g0, g1, . . . , gp−2

}
.

Thus half of the elements of Up can be written as gk with 0 ≤ k ≤ p− 2 even, and the other
half can be written as gk with 0 ≤ k ≤ p− 2 odd.

Lemma 3. Let p be an odd prime, and let g ∈ Up be a primitive element. If a = gk with k

even, then
(

a
p

)
= +1. If a = gk with k odd, then (a)(p−1)/2 = −1 and

(
a
p

)
= −1.

Proof. If a = gk with k even, then k = 2l for some l. Thus a = (gl)2. So a is a square. It is

non-zero since it is a unit (powers of g are units). Thus
(

a
p

)
= +1.

If a = gk with k odd then

(a)(p−1)/2 =
(
gk

)(p−1)/2
=

(
g(p−1)/2

)k
= (−1)k = −1

using the fact that k is odd together with Lemma 2. Finally, by Corollary 1 we know that

the unit a is not a quadratic residue, so
(

a
p

)
= −1. �

Corollary 2. Of the p− 1 elements of Up, there are (p− 1)/2 quadratic residues and there
are (p− 1)/2 that are not quadratic residues.

Proof. Recall, Up = {g0, g1, . . . , gp−2} . In the range 0 ≤ k ≤ p − 2 there are (p − 1)/2 even
values of k and (p− 1)/2 odd values of k. �

Theorem 1. If p is an odd prime and a is an integer, then
(

a
p

)
= a(p−1)/2.

Remark. In the above theorem we are considering
(

a
p

)
as taking values 0, 1,−1 ∈ Up instead

of 0, 1,−1 ∈ Z. So, technically we should put a big bar over
(

a
p

)
.

Proof. There are three cases to consider.

First suppose that
(

a
p

)
= 0. By definition, a = 0. Thus, a(p−1)/2 = 0

(p−1)/2
= 0, and the

result follows.
Next suppose that

(
a
p

)
= +1. Then a(p−1)/2 = 1 by Lemma 1.
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Finally, suppose that
(

a
p

)
= −1. Let g be a primitive element of Up. Since g generates Up,

there is a k such that gk = a. By Lemma 3, this k cannot be even. So k is odd. The result
follows from Lemma 3: a(p−1)/2 = −1. �

Exercise 2. Calculate
(

a
11

)
for all 0 ≤ a < 11 using Theorem 1.

2. Basic properties of the Legendre Symbol

Here are some very useful properties to know in order to calculate
(

a
p

)
. Throughout this

section, let p be an odd prime.

Property 1. If a ≡ 0 mod p then
(

a
p

)
= 0. In particular,

(
p
p

)
= 0.

Proof. This follows straight from the definition. �

Property 2. If a 6≡ 0 mod p and a ∈ Z is a square, then
(

a
p

)
= 1. In particular,

(
1
p

)
= 1.

Proof. If a is a square, then a is a square modulo p. So
(

a
p

)
= 1 since a 6= 0. �

Property 3.
(
−1
p

)
= (−1)(p−1)/2. In particular:

If p ≡ 1 mod 4, then
(
−1
p

)
= 1.

If p ≡ 3 mod 4, then
(
−1
p

)
= −1.

Proof. The first equation follows from Theorem 1. If p ≡ 1 mod 4, then p − 1 = 4k for
some k. Thus (p− 1)/2 = 2k. In this case (−1)(p−1)/2 = (−1)2k = 1.

If p ≡ 3 mod 4, then p− 3 = 4k for some k. Thus p− 1 = 4k + 2, and (p− 1)/2 = 2k + 1.
In this case (−1)(p−1)/2 = (−1)2k+1 = −1. �

Property 4. For a, b ∈ Z we have
(

ab
p

)
=

(
a
p

) (
b
p

)
.

Proof. This follows from Theorem 1:(
ab

p

)
= (ab)(p−1)/2 = a(p−1)/2 · b(p−1)/2

=

(
a

p

) (
b

p

)
.

�

Property 5. If a ≡ r mod p then
(

a
p

)
=

(
r
p

)
.

Proof. If a ≡ r mod p then a = r. By Definition 1, a = r clearly implies
(

a
p

)
=

(
r
p

)
. �

Exercise 3. Use Property 4 to show that the product of two quadratic residues is a quadratic
residue. Thus the set (Up)

2 of quadratic residues is closed under multiplication. (In fact, it
is a subgroup of Up.)

Exercise 4. Use Property 4 to show that if a, b ∈ Up are units such that one of them is a

quadratic residue but the other is not, then ab is not a quadratic residue.
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Exercise 5. Use Property 4 to show that if a, b ∈ Up are units that are both non-quadratic

residues, then ab is a quadratic residue.

Remark. For those of you who have taken abstract algebra, observe that Property 4 tells

us that the map a 7→
(

a
p

)
is a group homomorphism Up → {±1}. The kernel of this

homomorphism is the subgroup (Up)
2 of quadratic residues. The quadratic residues form a

subgroup, but the non-quadratic residues only form a coset.

Exercise 6. Give a multiplication table for (U11)
2. Hint: it should have 5 rows and columns.

3. Advanced properties of the Legendre Symbol

The proofs of the properties of this section will be postponed.

Property 6. Let p be an odd prime, then
(

2
p

)
is determined by what p is modulo 8.

If p ≡ 1 or p ≡ 7 mod 8, then
(

2
p

)
= 1.

If p ≡ 3 or p ≡ 5 mod 8, then
(

2
p

)
= −1.

The following is a celebrated theorem of Gauss.

Property 7 (Quadratic Reciprocity). Let p and q be distinct odd primes. Then(
q

p

)
= (−1)

p−1
2

· q−1
2

(
p

q

)
.

Remark. As we discussed above, p−1
2

is even if p ≡ 1 mod 4, but is odd if p ≡ 3 mod 4.

Similarly, for q. So p−1
2
· q−1

2
is even if either p or q is congruent to 1 modulo 4, but is odd if

both are congruent to 3. So

If p ≡ 1 or q ≡ 1 mod 4, then
(

p
q

)
=

(
q
p

)
.

If p ≡ 3 and q ≡ 3 mod 4, then
(

p
q

)
= −

(
q
p

)
.

4. Square roots

If b
2

= a in Fp then b is called a square root of a.

Lemma 4. Let p be an odd prime. If b is not zero, then b 6= −b.

Proof. Suppose otherwise, that b = −b = (−1)b. Since b is a unit, it has a multiplicative
inverse. Multiply both sides of b = (−1)b by b−1. This gives 1 = −1. So 1 ≡ −1 mod p.
This means that p divides 1− (−1) = 2. However, p > 2, a contradiction. �

Proposition 1. Let p be an odd prime. If a has a square root b, then −b is also a square
root. Furthermore, ±b are the only square roots of a.
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Proof. Since (−b)2 = (−1)2 · b2
= b

2
, if b

2
= a then (−b)2 = a. So the first statement follows.

Now we must show that ±b are the only square roots of a. First assume b 6= 0. Then by
Lemma 4, ±b are two distinct solutions to x2 = a. However, the polynomial x2 − a has at
most two roots by Lagrange’s theorem. Thus x2 = a has no other solutions. In other words,
there are no other square roots.

Finally, consider the case where b = 0, so −b = 0 and a = 0 as well. Now if c is a non-zero
square root of a = 0 then it is a zero divisor. Zero divisors do not exist in Fp since it is a

field. So b = 0 is the only square root. �

Proposition 2. Let p be an odd prime. Then the number of square roots of a in Fp is given
by the formula (a

p
) + 1.

Proof. There are three cases.

Case (a
p
) = 0. By definition, a = 0, which has 0 for a square root. By Proposition 1

the square roots are ±0. So 0 is the unique square root: there is exactly one square root.
Observe that (a

p
) + 1 = 0 + 1 = 1 gives the correct answer in this case.

Case (a
p
) = 1. By definition, a is a non-zero square, so it has a square root b in Fp. Clearly

b is non-zero (otherwise a would be 0
2
, but a is non-zero). By Proposition 1 and Lemma 4

there is exactly one other square root, namely −b. So there are two square roots. Observe
that (a

p
) + 1 = 1 + 1 = 2 gives the correct answer in this case.

Case (a
p
) = −1. By definition, a is not a square in Fp. So there are no roots. Observe that

(a
p
) + 1 = −1 + 1 = 0 gives the correct answer in this case. �

Exercise 7. Find all the square roots of all the elements of F11. For more practice try F7

or F5.

Exercise 8. For which primes p is it true that −1 has a square root? Find the first eight
primes with this property. For a few of these, find square roots of −1.

5. Quadratic equations modulo odd primes

The previous section considered the roots of x2− a = 0 (which are called “square roots”).
In this section we consider the general quadratic equation ax2 + bx + c = 0 in Fp with p an
odd prime.

Lemma 5 (Completing the square). Let p be an odd prime, and consider the quadratic
polynomial ax2 + bx + c where a 6= 0. Then r is a root of this polynomial if and only if

2ar + b is a square root of b
2 − 4ac.

Proof. Observe that

(2ar + b)2 = 4a2r2 +4abr + b2 = 4a2r2 +4abr +4ac− 4ac+ b2 = 4a(ar2 + br + c)+ (b2− 4ac).

So if ar2 + br + c ≡ 0 mod p, then (2ar + b)2 ≡ (b2 − 4ac) mod p.
Conversely, suppose (2ar + b)2 ≡ (b2 − 4ac) mod p. So

4a(ar2 + br + c) = (2ar + b)2 − (b2 − 4ac) ≡ 0 mod p.
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But a is a unit modulo p by assumption, and p - 4 so 4 is also a unit modulo p. Thus we can
cancel the 4a factor in the above equation leaving us with ar2 + br + c ≡ 0 mod p. �

Remark. We call b
2 − 4ac the discriminant of ax2 + bx + c.

Corollary 3. Let p be an odd prime, and consider the polynomial ax2 + bx + c where a 6= 0.
If this polynomial has a root in Fp then the discriminant has a square root in Fp.

Remark. You might have seen something like the above lemma in the context of deriving the
classical quadratic formula for F = R or F = C. In fact, the above lemma is valid in any
field F such that 1 + 1 6= 0. However, it it fails in F = F2.

Theorem 2. Let p be an odd prime, and consider the polynomial ax2 + bx + c where a 6= 0.
If this polynomial has at least one root in Fp and if δ ∈ Fp is a square root of the discrimi-

nant b
2−4ac (which exists by the previous corollary), then the roots are given by the formula

(−b± δ)(2a)−1. This formula is traditionally written as

−b±
√

b
2 − 4ac

2a
.

Finally, if the discriminant is a square in Fp then the polynomial has at least one root.

Proof. According to Lemma 5, if r is a root of ax2 + bx + c, then 2ar + b is a square root of
the discriminant. By Proposition 1 the only square roots of the discriminant are δ and −δ.
So either 2ar + b = δ or 2ar + b = −δ. Now solve for r.

Now suppose the discriminant is a square with square root δ. Let r be (−b + δ)(2a)−1.
This implies that 2ar + b = δ. So r is a root by Lemma 5. �

Proposition 3. Let p be an odd prime, and consider the polynomial ax2 + bx + c where
a 6= 0. Then the number of roots in Fp is given by the following (Legendre Symbol based)
formula: (

b2 − 4ac

p

)
+ 1.

Proof. There are three cases.

Case
(

b2−4ac
p

)
= 0. In other words, discriminant is 0, which is obviously a square. So by

Theorem 2, the polynomial has at least one root. Observe that δ = 0 is a square root of the
discriminant in this case. So by Theorem 2, the roots are (−b± δ)(2a)−1. Since δ = 0, both
possibilities give the same answer: there is exactly one root and it is −b(2a)−1.

Case
(

b2−4ac
p

)
= 1. In other words, the discriminant is a non-zero square. So by Theorem 2,

the polynomial has at least one root. Let δ be a square root of the discriminant. Since the
discriminant is non-zero, δ 6= 0. So δ and −δ are distinct by Lemma 4. By Theorem 2, the
roots are (−b±δ)(2a)−1. Claim: these roots are distinct. To see this suppose (−b+δ)(2a)−1 =
(−b− δ)(2a)−1. From this equation it is easy to derive δ = −δ, a contradiction. Thus there
are exactly two roots.
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Case
(

b2−4ac
p

)
= −1. In other words, the discriminant does not have a square root in Fp.

So by Corollary 3 (contrapositive), there are zero roots. �

6. Additional Practice Problems

Exercise 9. Compute
(

5
71

)
using the above properties. Likewise, compute

(
3
71

)
.

Exercise 10. Use the Legendre symbol to decide if 14 is a square in F101.

Exercise 11. How many roots does 2x2 + 3x + 4 have in F239?

Exercise 12. When is 5 a square modulo p where p is an odd prime? List the first eight
primes where this happens. Check a few of these to see if you can find square roots of 5.
(Hint: the answer depends on what p is modulo 5.)

Exercise 13. When is 7 a square modulo p where p is an odd prime? List the first eight
primes where this happens. Check a few of these to see if you can find square roots of 7.
(Hint: the answer depends on what p is modulo 28. Divide into two cases: p ≡ 1 mod 4 and
p ≡ 3 mod 4. Use the Chinese Remainder Theorem.)

Exercise 14. Show that
(
−3
p

)
=

(
p
3

)
for all odd primes p. (Hint: divide into three cases.

(i) p = 3, (ii) p ≡ 1 mod 4, and (iii) p ≡ 3 mod 4 with p 6= 3.)

Exercise 15. For what odd primes p are there elements a and a + 1 that are multiplicative
inverses to each other? List the first eight primes where this happens. Check a few of these
to see if you can find a. (Hint: show this happens if and only if x2 + x− 1 = 0 has roots.)

Exercise 16. For what odd primes p are there elements a and b in Fp that are both additive
and multiplicative inverses to each other? List the first eight primes where this happens.
Check a few of these to see if you can find a and b. (Hint: show this happens if and only if
−x2 = 1 has solutions.)

Exercise 17. For what odd primes p are there elements a and b in Fp that add to 3 but
multiply to 2?

Exercise 18. For what odd primes p are there elements a and b in Fp that add to 2 but
multiply to 3? List the first eight primes where this happens. Check a few of these to see
if you can find a and b. (Hint: the answer depends on whether −2 is a square modulo p.
Compute the Legendre symbol for each possible value of p modulo 8. Observe that knowing
p modulo 8 gives you knowledge of p modulo 4.)

Exercise 19. For what odd primes p is there a non-zero element in Fp whose cube is equal
to 3 times itself? List the first eight primes where this happens. Check a few of these primes
to see if you can find the desired element in Fp. (Hint: show this happens if and only if
x2 = 3 has a solution. Split into three cases: p = 3 and p ≡ 1 mod 4 and p ≡ 3 mod 4.)
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