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This document started as a kind of mathematically oriented freestyle translation
of E. Artin’s Über eine neue Art von L-Reihen (“A New Kind of L-Series”) [3] with
added commentary.1 However, I made enough changes in notation, terminology
and even in the details of proofs that the term translation is perhaps not entirely
appropriate. Instead, I decided to borrow the Latin term paraphrasis which was
in turn borrowed from Greek. This term connotes a very close connection to the
original article, while giving me license to make adaptations here and there for the
benefit of a modern reader. It also allows me to focus on the mathematical de-
scription and development without the responsibility capturing the subtle nuances
of German mathematical writing style from almost one hundred years ago.2 This
license allows me to sneak in clarifying devices, such as commutative diagrams,
which were not current in the 1920s.

My goal is to give a modern reader access to the mathematics of [3], but not
necessarily to follow the stylistic and mathematical conventions of the 1920’s. For
example, in his article Artin does not use the usual notation Ok for the ring of
integers of a number field k, but instead just speaks of integers in k. He speaks
of prime ideals in k instead of in the the ring of integers Ok. This is just one of
several conventions that I have chosen not to follow in this paraphrasis. In one
case I have even changed the statement of a result, and the proof, to be a bit
more general since it was easy to do so using Artin’s methods. I have even added
section titles to supplement Artin’s simple section numbering, and I have added
a bibliography. So the reader should expect these sorts of changes from Artin’s
original. However, I hope these changes are in a mathematical sense all minor, and
that I have captured the spirit of things well. My intent is to open up this great
landmark of mathematics to modern number theorists and transport the reader
to the genesis of the all important Artin L-Series. I have been faithful the order

∗Copyright c© 2022 by Wayne Edward Aitken. Version of August 25, 2022. This work is made
available under a Creative Commons Attribution 4.0 License. Readers may copy and redistribute
this work under the terms of this license. Thanks to Jason Martin for his comments and suggestions
on earlier drafts.

1Artin’s article is 20 pages long. As the reader will notice, this version has gained some
length since it departs from Artin’s elegant but succinct style, and includes a generous amount of
commentary.

2A good thing too; my knowledge of German and the mathematical conventions of the period
is not good enough for a faithful literal translation. Readers with a strong historical interest are
encouraged to read this paraphrasis alongside the German original to get a fuller picture.
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of presentation; the sectioning and section numbers, numbered equations, and the
numbering of main results (Sätze) are all faithful to [3].

In this paper Artin introduces what are known as Artin L-series, but the paper
has much more. It has the first statement, and proofs in many cases, of Artin’s
Reciprocity Law, arguably the most important result in class field theory. It has the
analytic continuation and functional equations for these new L-series: actually he
gives meromorphic continuations but only for powers of the L-series. So the analytic
continuations he gives here are viewed as possibly “multivalued”. He conjectures
that these are single-valued, i.e., that the L-series are indeed meromorphic on C,
and proves this in the significant case where the Galois group is A5 (the Icosahedral
case). Note that the Abelian case of the single-valuedness claim follows from Hecke’s
earlier work together with Artin’s reciprocity law; the general case was handled
much later by Brauer in 1947. Artin goes further and conjectures that primitive L-
series are entire (holomorphic) when they are not equal to Dedekind zeta functions,
and gives some evidence in the the A5 case. This conjecture remains open, even
for the specific case of A5 extensions. Finally, Artin gives a proof (assuming the
Reciprocity Law) of the Chebotaryov density theory. Unknown to Artin, at about
the same time as Artin was writing [3], Nikolai Chebotaryov proved this same result,
a conjecture of Frobenius, but with a different method that, in an interesting twist,
would be the inspiration for Artin’s definitive proof of the Reciprocity law of 1927.
So all in all, this is an amazingly rich and interesting paper.

The paper, published in 1924, reflects a seminar in Hamburg in July 1923. This
was the initial presentation of the theory, but is not the final word on the birth of
the theory. It suffered from gaps that were soon fixed by Artin himself during his
Hamburg years:

1. It depended on a general reciprocity law that Artin did not prove until 1927.
This is the partially proved Satz 2 in the current paper.

2. The ramified primes were not suitably handled yet. This was fixed in 1930,
with a factor for the “infinite prime” and a theory of conductors. (See [5])

The work on conductors made an impact on the number theorist Hasse who was
essentially the same age as Artin, and inspired Noether’s work on her theorem on
normal integral bases. So the work on reciprocity and conductors makes this work
of interest beyond concern for Artin L-series per se.

At the time of this paper, Artin was just starting his mathematical career. He
received his PhD under Herglotz in 1921, in Leipzig. After a year at Göttingen he
accepted a permanent position in Hamburg in 1922 and stayed there for 15 years.
It was a very rich and productive time in Artin’s career and which came to an end
when Artin moved to the United States to escape the Third Reich. (See [14] for
additional historical perspective.)

“Concerning a new kind of L-Series”: Introduction

By E. Artin in Hamburg.
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In what follows the black paragraphs give my very free translation of Artin’s
original paper. The blue paragraph gives my notes and comments. A similar
convention will hold for footnotes.

We start with the with the introduction, which consists of a short paragraph:

For investigating non-Abelian algebraic number fields one needs a new kind
of L-series that generalizes the usual L-series for Abelian algebraic number fields.
These analytic functions are formed with Frobenius style group characters. This
article is dedicated to the investigation of such functions.

1 Frobenius Style Group Characters: Review

For the convenience of the reader, I will begin by briefly giving the formulas and
notation that we will need from the theory of group characters.3

Let G be a finite group of order n. Decompose G into x conjugacy
classes C1, . . . , Cx, and let hi be the number of elements of Ci.

Let Γ be a representation of the group G as nonsingular matrices. Given Γ
we get a character χ which is a function G → C that assigns to σ ∈ G the trace
of the associated matrix. There are x irreducible representations Γ1, . . . ,Γx, and
let χ1, . . . , χx be their associated characters. These characters are called simple
characters. Every character χ is in fact the linear combination of simple characters:

(1) χ(σ) =

x∑
i=1

riχ
i(σ)

where ri are nonnegative integers associated with the decomposition of Γ into irre-
ducible representations.

The simple characters satisfy the following formulas

(2)
∑
σ

χi(σ)χk(σ−1) = nδik

and

(3)

x∑
i=1

χi(σ)χi(τ−1) =

{
0 if σ and τ are in different classes,
n
hr

if s and τ are both in the class Cr.

Furthermore, suppose H is a subgroup of G and that

(4) G =

s∑
i=1

HSi

is the decomposition into cosets (here Si ∈ G).
Let ∆ be a representation of the subgroup H of degree δ, and let Aσ be the

matrix associated to σ ∈ H. If σ ∈ G is not in H we take Aσ to be the zero matrix.
We build the matrix Bσ out of blocks in the following way:

(5) Bσ =
(
ASiσS−1

k

)
.

3See J. Schur 1905, Neue Begründung der Theorie der Gruppencharaktere (New foundation
for the theory of group characters), Sitzungsberichte (conference reports), Berlin, and Speiser [16]
Chapters 10-12.
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As stated this is an s by s square matrix with entries equal to δ by δ square
matrices, where s is the index of H in G. But we regard Bσ as defining a square sδ
by sδ matrix, and it turns out that this gives a representation of G called the
representative of G induced by the representation of H.4

Remark. In the above ASiσS−1
k

designates the (i, k) block (using the ith row parti-

tion and kth column partition). There are s2 such blocks total, and each block is
a δ by δ matrix. So the induced representation is given concretely in terms of sδ
by sδ matrices associated to each σ ∈ G.

Artin is viewing the group acting on the right of vectors. If we act on the left,
which is common today, we end up with the (i, k) block looking like AS−1

i σSk
.

If ψ is the character of the representation ∆ then the character χψ associated
to the representation (5) is called the character of G induced by the character ψ
of H.

Let ψ1, . . . , ψλ be the simple characters of the subgroup H. Then we can express
the restriction of χi to H as a nonnegative integral linear combination of ψ1, . . . , ψλ
with nonnegative integer coefficients r1i, . . . , rλi:

(6) χi(τ) =

λ∑
ν=1

rνiψν(τ) (i = 1, . . . , x)

for all τ ∈ H. Similarly, we can express the induced character χψi as a nonnegative
integral linear combination of the simple characters χ1, . . . , χx of G, and in fact the
nonnegative coefficients are just the coefficients that arise in (6):

(7) χψi(τ) =

x∑
ν=1

riνχ
ν(τ) (i = 1, . . . , λ).

for all τ ∈ G.

Remark. The above is an expression of the Frobenius reciprocity law. The version
of Serre [15] Section 7.1 can be written

〈ψ,Resχ〉H = 〈Indψ, χ〉G .

The above statement can be derived from this.

2 Construction of the L-Series

From now on let k be an algebraic number field, let K be a Galois extension of k,
and let G be the Galois group of K/k.

Let p be a prime ideal in the ring of integers of k not dividing the relative
discriminant of K/k. Let P be a prime ideal of OK dividing pOK .

4See Speiser [16] §52 from which formula (44) can easily be easily derived. See also an 1898
report by Frobenius called Über Relationen zwischen den Charakteren einer Gruppe und denen
ihrer Untergruppen (Concerning the connection between the characters of a group and those of
its subgroups).
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We chose an element σ ∈ G such that for all algebraic integers A in K we have

(8) σA ≡ ANp (mod P)

where Np is the norm of p in k. For the existence of such a σ see Weber’s Alge-
bra [20], §178 (volume 2).

This congruence determines σ uniquely given a choice of P, since if σ1 satisfies
the same congruence then, for all algebraic integers A in K,

σ−1σ1A ≡ A (mod P),

and so σ−1σ1 belongs to the inertia group (Trägheitsgruppe) of P. By our assump-
tion (p not dividing the relative discriminant) the inertia group is trivial.

Next suppose one chooses P′ instead of P as a designated prime divisor of pOK .
Since G acts transitively on primes above p, we have τP = P′ for some τ ∈ G. It
is easy to check that one gets τστ−1 as the corresponding element of G (where σ
is the corresponding element for P).

So we have a way to associate to p a well-defined conjugacy class C of G. It is
well-known that each element of C generates the decomposition group for some P
above p but this property does not in general completely determine the class C (in
fact certain powers of this class C with have this property).5 We will say that the
prime ideal p belongs to the class C and we will write this class as Cp.

Remark. We call each element of Cp a Frobenius element, and the class as a whole
the Frobenius class, in honor of Frobenius who, as Artin points out in the footnote,
developed this idea earlier. Artin does not really use these terms in the German
original of this paper, but I will use them in the translation below for the conve-
nience of the modern reader.

From now on let Γ be a linear representation of G. For p as above let Ap be a
matrix associated to an element of Cp via Γ. Since the elements of Cp are conjugate,
the characteristic polynomial

|E − tAp|

of Ap does not depend on the choice of Ap. Here E is the identity matrix and,
as usual, the absolute values indicates determinant. Note that Ap will change by
a conjugate if Γ is replaced by an equivalent representation, so the characteristic
polynomial only depends on the representation Γ up to equivalence.

We define the associated L-series by the formula

(9) L(s, χ; k) =
∏
p

1

|E − (Np)
−s
Ap|

where s is a complex variable and χ denotes the character associated with the
representation Γ. Here, the product varies only for the set of prime ideals p of Ok
that do no divide the relative discriminant of K/k.

5This assignment of conjugacy classes to prime ideals was already carried out by Frobenius. See
the 1896 Berlin report called Über Beziehungen zwischen Primidealen eines algebraischen Körpers
und den Substitutionen seiner Gruppe (concerning the relationships between prime ideals of an
algebraic field and the elements of its Galois group).
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Remark. In a later paper, Artin gives an explicit formula for terms associated to
primes that do divide the relative discriminant of K/k. Note that the above L
series is expressed using χ instead of Γ, since χ determines Γ up to equivalence and
so determines the expression on the right-hand side of (9).

The function L(s, χ; k) converges absolutely and uniformly on any closed and
bounded region in the half plane R(s) > 1. To see this observe that every root
of the characteristic polynomial |E − tAp| is a root of unity. Thus L(s, χ; k) is a
product of terms of the form

1

1− (Np)
−s
ε

where ε is a root of unity.

Remark. Since Ap has finite order it is diagonalizable with eigenvalues all equal to
roots of unity. So its characteristic polynomial factors as described by Artin.

Some of the convergence issues can be handled with the following well-known
criterion: if an infinite series

∑
|ai| converges then the corresponding infinite prod-

uct
∏

(1 + ai) converges, and the terms 1 + ai can be reordered freely with con-
vergence to the same result. Furthermore, if each term 1 + ai is nonzero then
the limit is nonzero. (See, for example, [17], Chapter 5, Proposition 3.1 for some
justification.)

On the other hand, it might be convenient to wait on convergence issues until
we have the formula for the logarithm given by Artin below.

One can now expand (9) in a Dirichlet series and express the coefficients in terms
of the character χ. The resulting formulas are not very clear (“Die Formeln werden
aber wenig übersichtlich”). On the other hand, we arrive at a simple formula for
the logarithm of (9).

First we associate a conjugacy class Cpν to any power pν of a prime ideal p. We
simply take the class consisting of Aνp where Ap ∈ Cp. It is easy to see that this
forms a conjugacy class of G. We write

(10) χ (pν) = χ(σ)

where σ is any member of Cpν .
Now let ε1, ε2, . . . , εf be the roots of the equation |Et−Ap| = 0. Then

(11) χ (pν) = εν1 + εν2 + . . .+ ενf .

So we get for |t| < 1

− log |E − tAp| = −
f∑
i=1

log(1− tεi) =

f∑
i=1

∞∑
ν=1

ενi
ν
tν =

∞∑
ν=1

χ(pν)

ν
tν

Remark. Here we understand log as a multivalued functions, or equivalently we
regard some of our equations as being valid modulo (2πi)Z. So for example, the
first equation above can be regarded as a congruence modulo (2πi)Z.

This leads to the desired formula:

(12) + logL(s, χ; k) =
∑
pν

χ(pν)

ν (Npν)
s ,
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where the sum varies over all powers of prime ideals of k not dividing the relative
discriminant of K/k.

Remark. Associated convergence issues can be justified by the observation that∑
pν

∣∣∣∣ χ(pν)

ν (Npν)
s

∣∣∣∣ < ∞∑
M=1

m
f

Mσ0
= mfζ(σ0) <∞

assuming that <(s) ≥ s0 > 1. Here ζ(s) is the classical Zeta function, the left sum
is taken over all ideals of the form pν , in any order, where p is a prime ideal of Ok
relatively prime to the relative discriminant of K/k, and ν is a positive integer.
Also f is the degree of the representation Γ and m is the degree [k : Q], so that at
most m ideals of the form pν can share the same norm.

In particular we have the absolute convergence of∑
pν

χ(pν)

ν (Npν)
s

which justifies the manipulations above. We also get uniform convergence on the
set <(s) ≥ s0 for each s0 > 1, and so the sum gives a homomorphic function on
the set defined by <(s) > 1. By exponentiation we get the desired convergence
properties for our Euler product expansion of L as well, including the invariance
under reordering of terms with a product that defines a holomophic function in s
with no zeros on the set defined by <(s) > 1.

Either from (9) or even better from (12) one sees that

(13) L(s, χ+ χ′) = L(s, χ)L(s, χ′)

for any two characters χ and χ′.
If χ is a simple character then we will call the associated L-series a primitive

L-series. If χ is a general character expressed in terms of simple characters, as
in (1) then (13) gives us

(14) L(s, χ) =

x∏
i=1

(
L(s, χi)

)ri
.

A brief remark about the dependence on the field K: suppose Ω is an exten-
sion of K that is Galois over k. Then G = Gal(K/k) is isomorphic to the quotient
group Gal(Ω/k)/Gal(Ω/K). If σ ∈ Gal(Ω/k) is such that (8) is valid for all algebraic
integers in Ω then it will of course be valid for all algebraic integers in K. Further-
more, (8) will be valid for algebraic integers A in K if we replace σ with any element
of the coset σGal(Ω/K). Next observe that every character of Gal(Ω/k)/Gal(Ω/K)
is a character of Gal(Ω/k), and every simple character of Gal(Ω/k)/Gal(Ω/K) is a
simple character of Gal(Ω/k). In particular every L-series using K as the extension
will essentially be an L-series using Ω as the extension, and if the L series is prim-
itive using K then it will be primitive using Ω. However, the relative discriminant
of Ω/k may exclude a finite number of prime factors in the L-series that occur using
the relative discriminant of K/k. But we will consider L-series that differ from each
other by only a finite number of factors as being essentially the same. By the way,
we will be able to normalize the L-series later to be truly invariant of K.

7



Remark. The above uses a fundamental compatibility principle for of the Frobenius
element associated with two extensions Ω/k and K/k of a common base field k.
This principle is needed in several places in this paper, so I will go ahead and codify
it as a lemma. I will switch the roles of K and Ω here since in what follows Ω is
often used to denote an intermediate field.

Lemma 1. Suppose K/k is a Galois extension of number fields with Galois group G
and let Ω be an intermediate field such that Ω/k is also Galois. Let p be a prime
ideal of Ok not dividing the relative discriminant of K/k, let q be a prime ideal
of OΩ above p, and let P be a prime ideal of OK above q. In other words we have
a triple extension K/Ω/k with corresponding prime ideals P, q, p.

Then if σ ∈ G is the Frobenius element associated to P, then the restriction σ′

of σ to Ω is the Frobenius element of q in the Galois group of Ω/k. When we
identify the Galois group of Ω/k with G/H where H is the Galois group of K/Ω,
then this Frobenius element σ′ is the coset σH ∈ G/H.

Proof. By (8) we have that σA−ANp ∈ P for all A ∈ OK . So

σ′A−ANp ∈ P ∩ OΩ = q

for all A ∈ OΩ. Hence
σ′A ≡ ANp (mod q)

for all A ∈ OΩ, and so σ′ is the desired Frobenius element. By basic Galois theory, σ′

corresponds to the coset σH ∈ G/H.

3 The Theorem on Induced Representations

Let H be a subgroup of G, let Ω be the subfield of K fixed by H, so H is the Galois
group of K/Ω.

The first main theorem (Satz 1) concerns the following situation:

• ∆ is a representation of H.

• Γ∆ is the induced representation of G.

• ψ is the character of ∆, and χψ is the character of Γ∆.

• Exclude as factors of L(s, ψ; Ω) any prime dividing the relative discriminant
of K/k (considered as an ideal of the ring of integers of Ω).

Satz 1. In the situation discussed above

(15) L(s, ψ; Ω) = L(s, χψ; k).

Proof. We set up the following notation:

• Let p be a prime ideal of Ok not dividing the relative discriminant of K/k.

• Let q1, q2, . . . , qr be the prime ideals of OΩ dividing pOΩ:

pOΩ = q1q2 · · · qr.
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• Let li be the relative degree of qi over p. In other words, (Np)li is the size Nqi
of the residue field OΩ/qi.

• For each qi choose a prime ideal Pi of OK dividing qiOK .

• For each such Pi let τi ∈ G be chosen so that Pi = τiP1. (Recall that the
Galois group G acts transitively on the primes of OK dividing pOK).

• Let σ ∈ G be the Frobenius element associated with P1 over k. In other
words,

σA ≡ ANp (mod P1)

for all A ∈ OK .

• Let σi
def
= τiστ

−1
i . Observe that

(16) σiA ≡ ANp (mod Pi)

for all A ∈ OK so σi is the Frobenius element associated with Pi. Thus σi
generates the decomposition group of Pi.

Claim: The Frobenius element associated with Pi over Ω is equal to σlii . To see
this first observe that from (16)

(17) σlii A ≡ A
(Np)li ≡ ANqi (mod Pi),

So to establish that σlii is the Frobenius element we just need to show that σlii ∈ H.
In the special case where A = α ∈ OΩ we have from (17) and Fermat’s little theorem
that

σlii α ≡ α
Nqi ≡ α (mod Pi).

Since p does not divide the relative discriminant of K/k, this means that σlii α = α

for all α ∈ OΩ and hence for all α ∈ Ω. So σlii ∈ H as desired.

Remark. Note that σi is in the decomposition group of Pi, and so σlii is, of course,
in this decomposition group. Since Pi is unramifield over qi, the canonical map
from the decomposition group of Pi to the Galois group of OK/Pi is injective.

Next we observe that li is the smallest positive power ν of σi such that σνi ∈ H.
To see this observe that if σνi ∈ H then by (16)

σνi α = α ≡ α(Np)ν (mod Pi)

for all α ∈ OΩ. Thus (Np)ν ≥ (Np)li = Nqi and so ν ≥ li.
Remark. The last step becomes clear when we observe that every element of the
residue field has been shown to be a root of X(Np)ν −X which is a polynomial in X
of degree (Np)ν . But the residue field has (Np)li = Nqi elements.

Claim: Consider cosets Hσaντν and Hσbµτµ. These cosets are equal if and only
if ν = µ and a ≡ b (mod lν).

One direction of this claim is straightforward since σlνν ∈ H, so if a ≡ b mod-
ulo lν then Hσaν = Hσbν and so Hσaντν = Hσbντν . For the other direction, assume
that Hσaντν = Hσbµτµ, and so

σaν τν = τ0 σ
b
µ τµ
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with τ0 ∈ H. So by the definition of σν and σµ

τ0 = σaν τν τ
−1
µ σ−bµ = τν σ

a−b τ−1
µ

and, since σ is in the decomposition group of P1,

τ0Pµ = τν σ
a−b τ−1

µ Pµ = τν σ
a−bP1 = τνP1 = Pν .

Since τ0 ∈ H, it is the identity map on Pµ ∩ OΩ = qµ, but the image of Pµ ∩ OΩ

is Pν ∩ OΩ = qν . So qµ = qν . Thus µ = ν. We then have σaν τν = τ0 σ
b
ν τν so

that σa−bν ∈ H which implies that a ≡ b (mod lν).
So we have identified l1 + . . .+ lr distinct cosets of H. But we know that

l1 + . . .+ lr = [Ω: k] = [G : H].

So we have identified all the right cosets of H.
Note that Hσaντν = Hτνσ

a, and so have coset representations, as in (4) with Si
varying in the sequence

τ1, τ1σ, . . . , τ1σ
l1−1, τ2, τ2σ, . . . . . . , τr, τrσ, . . . , τrσ

lr−1.

In other words, each Si is of the form τνσ
a with 0 ≤ ν ≤ r and 0 ≤ a < lν .

According to (5), in the induced representation Γ∆ of G, the element σ ∈ G is
represented by the matrix described in terms of blocks as follows:

Bσ =
(
ASiσS−1

k

)
=
(
Aτνσa−b+1τ−1

µ

)
where, as above, Aτνσa−b+1τ−1

µ
is the zero block if τνσ

a−b+1τ−1
µ is not in H.

Remark. Here the row blocks are indexed by (ν, a) and the column blocks are
indexed by (µ, b).

Note that τνσ
a−b+1τ−1

µ ∈ H if and only if τνσ
a−b+1 ∈ Hτµ. But since τνσ

a−b+1

is in the coset Hσa−b+1
ν τν we conclude that the block is zero unless both µ = ν

and a− b+ 1 ≡ 0 (mod lν).
For a fixed ν we can consider the square matrix Cν which is described as a block

matrix whose (a, b) block is the δ by δ square matrix
(
Aτνσa−b+1τ−1

ν

)
. In particular

the (a, b) block is zero unless a− b+ 1 ≡ 0 (mod lν). Note that Cν is an lνδ by lνδ
square matrix. Then (for a suitable ordering of a basis) one can write Bσ in terms
of blocks as follows:

Bσ =


C1 0 · · · 0
0 C2 · · · 0
...

...
...

0 0 · · · Cr

 .

If a = 0, 1, . . . , lν − 2 then the (a, b) block of Cν is zero unless b = a + 1, and
when b = a + 1 the block is Aτνσa−b+1τ−1

ν
which is the δ by δ identity matrix E.

If a = lν − 1 then the (a, b) block of Cν is zero unless b = 0 and the (lν − 1, 0) block
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is given by Aτνσlν τ−1
ν

= Aσlνν = Alνσν . So Cν decomposes into blocks as follows:

Cν =


0 E 0 · · · 0
0 0 E · · · 0
...

...
...

...
0 0 0 · · · E

Aσlνν 0 0 · · · 0

 .

The characteristic polynomial in t is then

|E − tBσ| =
r∏

ν=1

|E − tCν | =
r∏

ν=1

∣∣∣∣∣∣∣∣∣∣∣

E −tE 0 · · · 0
0 E −tE · · · 0
...

...
...

...
0 0 0 · · · −tE

−tAσlνν 0 0 · · · E

∣∣∣∣∣∣∣∣∣∣∣
.

Adding t times the first column to the second, then t times the (new) second to the
third, and so on, one gets

|E − tBσ| =
r∏

ν=1

∣∣∣∣∣∣∣∣∣∣∣

E 0 0 · · · 0
0 E 0 · · · 0
...

...
...

...
0 0 0 · · · 0

−tAσlνν −t2Aσlνν −t3Aσlνν · · · E − tlνAσlνν

∣∣∣∣∣∣∣∣∣∣∣
.

Thus

|E − tBσ| =
r∏

ν=1

∣∣∣E − tlνAσlνν ∣∣∣ .
Note this last formula does not depend on the choice of σ since different choices

of Frobenius elements gives the same characteristic polynomials.
The contribution of p to L(s, χψ; k) is

1

|E − (Np)−sBσ|
=

r∏
ν=1

1

|E − (Np)−lνsAσlνν |
=

r∏
ν=1

1

|E − (Nqν)−sAσlνν |
.

We have already seen that the Frobenius element associated with Pi over Ω is
equal to σlii . So the right hand side of the above formula gives the product of
the qν contributions to L(s, ψ; Ω). Thus Satz 1 is proved.

4 Factorization of Zeta Functions

Satz 1 gives us, for starters, a factorization of zeta functions of intermediate fields
Ω in terms of primitive L-series associated to K/k

11



When we consider the trivial representation and the trivial character χ = 1 (der
Hauptcharakter χ1) we get

L(s, χ1; k) =
∏
p

1

|E − (Np)
−s
Ap|

=
∏
p

1

1− (Np)
−s

which is, up to a finite number of factors, just the zeta function ζk(s) of the base
field.

More generally if Ω is an intermediate field between k and K, and if H is the
Galois group of K/Ω with trivial character (Hauptcharakter) ψ1 then

L(s, ψ1; Ω) = ζΩ(s),

at least up to a finite number of factors. Let ΠΩ be the induced representation
associated with the trivial representation of H. Note that ΠΩ is simply the rep-
resentation associated with the permutation of cosets of H in G (so if Ω is itself
Galois over k, it corresponds to the regular representation of the Galois group of Ω
over k). Thus the associated character χΩ has the property that, for any σ ∈ G, the
value χΩ(σ) is the number of cosets fixed by σ under this action, so is determined
in a most simple manner. If we decompose χΩ in terms of primitive characters

χΩ(σ) =

x∑
i=1

giχ
i(σ)

then gi is obtained using (2):

(18) gi =
1

n

∑
σ

χΩ(σ)χi(σ−1)

(n is the order of G and so is n = [K : k]). So Satz 1 in combination with (14)
implies

(19) ζΩ(s) =

x∏
i=1

(
L(s, χi)

)gi
which is the desired factorization (up to a finite number of factors).

Remark. From what Artin has said up to this point it is apparent that he regards G
as acting on the left for its natural action on K, but regards G as acting on the right
for linear representation. Under this convention ΠΩ is the permutation representa-
tion of the right action of G on the collection H\G of right cosets. However, the
associated character χΩ(σ) is the same whether we use left actions or right actions
here (in other words, the number of left cosets fixed by σ ∈ G is the same as the
number of right cosets fixed by σ).

In the special case of K = Ω the induced representation is the regular represen-
tation and we get the simple formula

(20) ζK(s) =

x∏
i=1

(
L(s, χi)

)fi
.

12



Remark. Here fi is the degree of character χi. So if K/k is Abelian, we have fi = 1.
In general, all the primitive L-series for K/k occur in the factorization.

Formula (19) gives all the relations between the zeta functions of intermediate
fields. To get such a relation, one uses (19) for various Ω and eliminates the L-
series factors L(s, χi). One is left with relations between zeta functions. So the
equations (19) can be regarded as parameterizing relations. We will show later
(Section 8) that this is the only way to get relations between zeta functions (when
we reduce to the case k = Q).6 This essentially solves the problem of relations
between zeta functions.

There is another way to formulate our results. Observe that the factoriza-
tion (19) of ζΩ(s) runs parallel to the factorization into irreducible polynomials
of the group determinant (Gruppendeterminante) associated to the permutation
representation ΠΩ. So one can say the following:

One gets all the relations between zeta functions of intermediate fields by finding
the relations between the group determinants associated with transitive permuta-
tion actions of G, and replacing the group determinants with the corresponding
zeta functions.

Remark. The “group determinants” that Artin mentions above are certain homo-
geneous polynomials associated to groups and their representations. They are not
as familiar today as they were when Artin wrote this paper, so I will give some
details. They are called “determinants” since they arise as determinants of ma-
trices with entries that are homogeneous linear polynomials. These polynomials
were studied by Dedekind and Frobenius, and their study led Frobenius to his the-
ory of characters of non-Abelian groups in 1896 that is in fact the basis of the
current paper (see [9]). They are easy enough to define: consider the polynomial
ring C[Xg1 , . . . , Xgn ] associated to a given finite group G = {g1, . . . , gn} where
the Xgi are independent variables. If g 7→ Ag is a representation of G by com-
plex matrices, then the determinant associated to the representation is simply the
determinant of the following matrix:

AG
def
=
∑
g∈G

XgAg.

The matrix AG has a particularly nice description if the representation is a permu-
tation representation, and even more so for the regular representation (it is a good
exercise to work these out). The determinant associated to the regular representa-
tion is called the “group determinant” of G and can be thought of as a fundamental
algebraic invariant of G.

The determinant associated to a representation is an irreducible polynomial if
and only if the representation is an irreducible representation, and the decompo-
sition of a representation is reflected in the factorization of its associated deter-
minant. Observe also that the degree of such a determinant polynomial is equal
to the degree of the representation. Note that, historically speaking, the problem
of factoring the group determinant proceeds, and in fact motives, the problem of

6See E. Artin, Über die Zetafunktionen gewisser algebraisher Zahlkörper (Concerning the zeta
functions of certain algebraic number fields), Math. Ann Bd. 89, where the relations in special
cases are obtained.
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decomposing a representation into irreducible factors that is the starting point of
modern representation theory (See [9]).

For a simple example, the group determinant of a two-element group G = {1, σ}
is just X2

1 −X2
σ which factors as (X1 +Xσ)(X1 −Xσ), reflecting the fact that the

regular representation of G decomposes into two irreducible representations, each
of degree 1.

For now these relations are only valid up to a finite number of factors. Because of
the existence of functional equations for zeta functions, we can use the well-known
methods of Herrn Hecke to show the relations are exactly valid.7

Remark. These methods of Hecke allow us to use functional equations of zeta func-
tions to conclude that if a relation between zeta functions is valid up to a finite
number of Euler factors, then the relation holds exactly. (See Lemma 2 below for
an illustration of this phenomenon.)

Of course, similar considerations apply for relations between L-Series of inter-
mediate fields.

Remark. We can use Artin’s results to get an even more dramatic conclusion. Sup-
pose ζΩ is a zeta function with base number field Ω, or more generally consider L
functions with base field Ω. Then by result alluded to at the and of Section 2, we can
take K to be an extension of Ω that is Galois over Q. So the above considerations al-
low us to express ζΩ (or more general L-functions) in terms of primitive L-functions
over Q. Artin, in Section 8 below, will show that this decomposition is unique.

5 The Abelian Case

We now consider the case where G is Abelian. We investigate whether the primi-
tive L-series defined in this document correspond to the usual L-series.

Remark. These earlier L-series were defined by Weber and generalize those de-
fined by Dirichlet. They are defined in terms of characters of class groups (where
characters are understood here in the traditional Dirichlet-Dedekind sense as a
homomorphism from a finite Abelian group into C×).

When G is Abelian, each conjugacy class has a single element. So for each
prime p of k not dividing the relative discriminant of K/k there is exactly one
Frobenius element σ ∈ G, and (8) holds for all primes P in K above p. One can
replace (8) with the congruence

(21) σA ≡ ANp (mod p).

Further, the irreducible representations of G are all of degree 1, and they cor-
respond to the ordinary Abelian characters χi(σ) of G. Hence

(22) L(s, χi) =
∏
p

1

1− χi(σ)
Nps

where σ denotes the Frobenius element associated to p.

7E. Hecke: Über eine neue Anwendung der Zetafunktion auf die Arithmetik der Zahlkörper
(concerning a new application of zeta functions to the arithmetic of number fields). Göttinger
Nachrichten 1917.
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Remark. Equation (21) follows from the Chinese remainder theory. In (22) the
Frobenius element σ depends on p. Artin makes this implicit, but a notation such
as σ(p) could be used here if we wanted to make this explicit.

Now in this situation K is the class field of a certain class group {C1, . . . , Cn}
for a certain modulus m (a certain ideal of Ok) with the property that a prime
ideal p of Ok prime to m splits into prime ideals of the first degree in OK if and
only if p is in C1 where C1 is the identity class (Hauptklasse).8

Remark. We can think of {C1, . . . , Cn} as a certain quotient group of the multi-
plicative group of fractional ideals whose prime factors are prime to m. In other
words, each Ci is a class of fractional ideals prime to m. There is a minimal ideal m
that we can use called the conductor, but we get well-defined version of the class
group when we use multiplies of this minimal modulus. Replacing a modulus by
a multiple gives a class group that is naturally isomorphic to the first, so we can
often say “the ideal class group” associated to K/k is we are not concerned about
the exact modulus. However replacing a modulus with a multiple can reduce the
set of prime ideals of Ok prime to the modulus, but only by a finite number.

The identity between our new L-series and the usual L-series will be shown once
we are able to prove the following:

Satz 2.
a) The Frobenius element σ of p depends only on the ideal class Ci containing p,

(so we can assign a Frobenius element to each ideal class Ci by choosing any prime
ideal in that class as a representative).

b) This Frobenius map gives an isomorphism between the ideal class group and
the Galois group G.

Remark. Observe that if Satz 2 holds for a certain modulus m then it automatically
holds for any multiple of m. So there are really two versions of Satz 2, the strong
version and the weak version. The strong version asserts the result where the class
group is taken with any valid modulus m, or equivalently with the conductor as the
modulus. The weak version asserts the result for some modulus m, or equivalently
asserts (a) for “almost all” prime ideals, i.e. all prime ideals of Ok outside a certain
finite subset (and where we can then let m be any valid modulus).

When we know that almost all prime ideals of a given ideal class Ci must
have the same Frobenius element, we can conclude that all ideal classes containing
infinitely many prime ideals can be assigned a well-defined Frobenius element. But
note that every ideal class Ci contains an infinite number of prime ideals p of Ok
by a suitable generalization of Dirichlet’s theorem concerning primes in arithmetic
progressions. Thus we can assign a Frobenius element to any class. This is the
content of the first part of Satz 2.

This result implies that every character of the Galois group G is then a character
of the ideal class group and conversely. So any L-series in our sense is then a L-
series in the usual sense. Conversely, if an ordinary L-series is given for an ideal

8See Teiji Takagi: Über eine Theorie des relativ Abelschen Zahlkörpers (concerning a theory
of relative Abelian number fields), Journal of the College of Science, Tokyo 1920 [18]. Further
reference to Takagi will generally be from this paper.
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class group then it will be an L-series for the character of the Galois group of
the associated class field. So Satz 2 implies that our new definition is indeed a
generalization of the old definition, agreeing with the old definition in the case
where K/k is Abelian.

Remark. Satz 2 is called “Artin reciprocity”. It is the culmination of classical class
field theory, and will be proved by Artin in an article [4] appearing a few years later
in 1927. When Artin wrote the current article in 1923, Teiji Takagi had already
developed class field theory to a very high degree, and Artin builds on this here.
Takagi’s results give the following. If K/k is an Abelian extension of degree n
then K is the class field of a class group C = {C1, . . . , Cn} defined with respect to a
modulus m for some ideal m of Ok. What this means is that {C1, . . . , Cn} partitions
the collection of ideals, and even fractional ideals, of Ok prime to m. Furthermore,
the set C = {C1, . . . , Cn} of these classes is a group where CiCj is defined as the
class containing IiIj for any choice Ii ∈ Ci and Ij ∈ Cj . The modulus m is such
that all prime ideals p ∈ Ci prime to m are unramified in OK in the sense that pOK
factors into distinct prime ideals. Furthermore, for such p prime to m, we have
that p is in the identity class C1 if and only if p splits in OK (in the sense that pOK
factors into n distinct primes of relative degree 1).

Another very important result of Takagi is that C = {C1, . . . , Cn} is isomorphic
to the Galois group G of K/k. Interestingly, Takagi showed the isomorphism ab-
stractly and did not supply a particular isomorphism. What Artin reciprocity does
is gives a explicit canonical isomorphism C → G.

Satz 2 is also of interest in itself. It gives an explicit description of the isomor-
phism between the Galois group G and the ideal class group. In the case where G
is cyclic, Satz 2 is completely identical with the general reciprocity law, assuming
the base field k has the associated roots of unity. And indeed the agreement is so
obvious that Satz 2 has to be interpreted as as the general reciprocity law (even
when k does not have the associated roots of unity) even if the formulation seems
a bit strange (fremdartig) at first as a reciprocity law.

Remark. The general reciprocity referred here, and in the next paragraph, seems
to be a version developed by Takagi mentioned in special case 5. below. This law
is less familiar today than other reciprocity laws, but the important take-away is
that Takagi’s law generalizes the classical reciprocity laws. Since Artin reciprocity
generalizes Takagi’s reciprocity law it automatically generalizes all the more familiar
classical reciprocity laws.

The situation is, however, that our provisional proof of Satz 2 only really suc-
ceeds in the cases where the general reciprocity law is accessible to us, that is for K
of prime degree over k or composite fields of such extensions. For general fields we
must, for the time being, just postulate Satz 2. We will do so in future sections
which will allow us to regard all purely Abelian matters as being settled.

In this section we will prove Satz 2 in the cases accessible to us. We will proceed
in stepwise fashion where we give the most general results possible in in order to
make the relationships stand out more clearly.

1. A prime ideal p is in the identity class C1 (the “Hauptklasse”) if and only if
the corresponding Frobenius element σ is the identity in G.
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Remark. Of course here we are only interested in prime ideals p of Ok prime to the
modulus m. As we will see in the proof, this result holds for any valid modulus.

Proof. If the Frobenius of p is the identity element of G then A ≡ ANp (mod P)
holds for all A ∈ OK and all primes P of OK dividing pOK . This implies that
the residue field OK/P has Np elements and so the degree [OK/P : Ok/p] is 1.
Thus pOK factors into primes of relative degree 1, which means that p ∈ C1 by
Takagi Satz 31.

Conversely, if p is in the identity class C1 then pOK factors into primes of relative
degree 1. Thus A ≡ ANp (mod P) holds for all prime ideals P dividing pOK and
all A ∈ OK . This means that σ = 1 works as the Frobenius element.

Remark. Note that A ≡ ANp (mod P) holds for all A ∈ OK if and only if every
element of the residue field OK/P is a root of xNp− x. Lagrange’s theorem on the
number of roots of a polynomial of a given degree and by Fermat’s little theorem,
this holds in turn if and only if OK/P is equal to its subfield Ok/p.

Remark. The above, when combined with Takagi’s class field theory, allows us
to jump from homomorphisms to isomorphisms. Suppose in fact that we have a
homomorphism C → G from the class group C associated to K/k to the Galois
group G of K/k. Suppose also that the class of any prime ideal p maps to the
associated Frobenius element (perhaps even with a finite number of exceptions).
Assume C ∈ C is a class in the kernel. Then 1. implies that C is the identity class
(using a density result via Weber L-functions). Thus C → G is injective. From
Takagi’s class field theory, C and G have the same size (in fact Takagi showed they
are isomorphic), thus C → G is surjective as well.

Remark. The following result is one where we have to be careful about the dis-
tinction between the strong and weak versions of Satz 2. The proof seems to give
the following: any modulus for which Satz 2 holds for K/k will also yield Satz 2
for Ω/k where Ω is an intermediate field.

2. If Satz 2 is valid for an Abelian extension K/k then it is valid for Ω/k for
any intermediate field Ω.

Proof. Let GΩ ⊆ G be the Galois group of K/Ω. Let r be the order of GΩ and let s
be the index of GΩ in G. As usual the quotient G/GΩ will be identified with the
Galois group of Ω/K.

We assume Satz 2 for the extension K/k so there is a class group {C1, . . . , Cn}
relative to some modulus m, and a Frobenius isomorphism C → G sending Ci ∈ C
to the Frobenius element σ ∈ G associated to any prime ideal in Ci.

Since Ω is an intermediate field, by Takagi’s results Ω is the class field for a class
group H = {H1, . . . ,Hs}, and moreover H can be chosen to come from a quotient
group of C. In other words, we can use the same modulus m for H as for C, and we
can write the identity class (Hauptklasse) of H as the union of classes of C

H1 = C1 ∪ C2 ∪ · · · ∪ Cr
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(where we reindex the elements of C as necessary).9 By 1. (above) if p is a prime
ideal of Ok not dividing m then the Frobenius element of p in G/GΩ (relative to
the extension Ω/k) is equal to the identity coset GΩ ∈ G/GΩ if and only if p ∈ H1.
So by the compatibility of the Frobenius for K/k compared to Ω/k we have that
the Frobenius element of Ci in G is in GΩ if and only if Ci ⊆ Hi.

10

We now show that all primes in a given classHi have the same Frobenius element
in G/GΩ. Since H comes from a quotient group of C, we can write Hi as C ′iH1 for
some C ′i ∈ C. So if p ∈ Hi is a prime ideal we have p ∈ C ′iCj for some 1 ≤ j ≤ r
(by the decomposition of H1). By Satz 1 for K/k we have that p has Frobenius
element σiτj ∈ G where σi ∈ G is the Frobenius element of the class C ′i and τj ∈ GΩ

is the Frobenius element of Cj (recall Cj ⊆ H1 so τj ∈ GΩ). Observe that σiτj is
in the coset σiGΩ, and so by the compatibility of the Frobenius elements for K/k
compared to Ω/k we have that the Frobenius element of p in G/GΩ is σiGΩ. Thus
all primes p in Hi have the same Frobenius element in G/GΩ. This proves the first
part of Satz 1 for Ω/k.

Now we have a well-defined Frobenius function H → G/GΩ, and we must show
it is a homomorphism. This follows from the fact that the following commutes,
where the horizontal maps are the Frobenius maps and the vertical maps are the
natural quotient maps:

C G

H G/GΩ

Since the vertical map C → H is surjective, and since the top three maps are
homomorphisms, the bottom map must also be a homomorphism.

This Frobenius map H → G/GΩ is surjective since if σGΩ is in G/GΩ, then σ
is the Frobenius in G for some p, which means σGΩ is the corresponding Frobe-
nius in G/GΩ. Since H and G/GΩ have the same order, the map is in fact an
isomorphism.

Remark. Artin’s proof original is a bit terse, so I expanded it a bit in my trans-
lation (and even snuck in a commutative diagram not in the original). I will add
extra explanatory details to other proofs as we proceed. One thing Artin did not
need to do, however, is to argue that the map H → G/GΩ is surjective since as
pointed in a remark after result 1. above, we know such a Frobenius map must be
an isomorphism once we know it is a homomorphism. Alternatively, we can see
surjectivity right away from the commutative diagram and the fact that the top
and right maps are obviously surjective.

9Let C1 be the identity class (die Hauptklasse) of C and let Im be the full group of fractional
ideals ofOk relatively prime to the modulus m. Then there is a principle of class field theory similar
to what we find in Galois theory: the intermediate fields of K/k are in bijective correspondence
with subgroups of Im containing C1. This correspondence reverses inclusion. Given such a
subgroup H1 of fractional ideals, the Galois group of the corresponding intermediate extension Ω/k
is isomorphic to Im/H1, and the cosets of H1 in Im give the class group associated to Ω/k. Note
also that the prime ideals of H1 are exactly the prime ideals in Im that split in Ω.

10See Lemma 1.
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Remark. In several places in the above proof we used the the compatibility of the
Frobenius for K/k compared to Ω/k. This was addressed at the end of Section 2
(and is summarized in Lemma 1 in the commentary). Note that this compatibility
is what justifies the commutative diagram that I inserted into the above proof.

Remark. The next result can also be regarded as a justification for either the strong
or the weak versions of Satz 2. In other words, if the strong version of Satz 2 holds
for K1 and K2 then the proof yields the strong version for K1K2. If, however, only
the weak version of Satz 2 holds for K1 and K2 then the proof can be regarded as
a proof for the weak version of K1K2. This is based on the observation that any
modulus valid for an Abelian extension is valid for any subextension.

3. Suppose Satz 2 holds for two Abelian extension K1 and K2 of k whose inter-
section is k, then it holds for the composite field K = K1K2. .

Proof. Let m be common modulus such that Satz 2 holds for K1 and K2 with
modulus m, and let C1, . . . , Cn;D1, . . . , Dm be classes taken for the modulus m
where the Ci form the class group for K1 and Di form the class group for K2.
Let G1 be the Galois group of K1/k and G2 be the Galois group of K2/k. Suppose
that Ci has Frobenius σi ∈ G1 and Dj has Frobenius τj ∈ G2.

As we know from Galois theory, the Galois group of K1K2/k can be identified
with G1 × G2. Note that K1K2 is the class field associated to the class group
described by the partition of ideals prime to m given by the intersections Cr∩Ds.

11

The product of classes for this class group is described by the following equation:

(Cr ∩Ds)(Cu ∩Dv) = CrCu ∩DsDv.

Now let A1 ∈ OK1 and A2 ∈ OK2 be generators fo K1/k and K2/k respectively.
Let A = ϕ(A1, A2) be in OK1K2

. Let p be in Cr ∩Ds. Then

ANp ≡ ϕ(ANp
1 , ANp

2 ) ≡ ϕ(σrA1, τsA2) ≡ (σr, τs)A (mod )p.

Suppose A is an integral element of K1K2 of the form A1A2 with A1 ∈ OK1

and A2 ∈ OK2
. If p is a prime ideal in Cr ∩Ds then

ANp = ANp
1 ANp

2 ≡ (σrA1)(τsA2) = (σr, τs)A (mod p)

Thus the Frobenius of any prime ideal in Cr ∩Ds is (σr, τs), which is independent
of the choice of p. So the first part of Satz 2 holds. The second part follows as well
based on what we have shown.

11This is not too difficult to show. In fact we can appeal the the principle of footnote 9. Let Im
be the group of fractional ideals of Ok prime to m, and let Pm be the subgroup of principal ideals
with totally positive generators congruent to 1 modulo m. Then Pm corresponds to the ray class
field Lm that clearly contains K1K2 since it contains both K1 and K2. Under the correspondence
between subfields of Lm containing k and subgroups of Im containing Pm, the group C1 corresponds
to K1 and D1 corresponds to K2. So C1∩D1 corresponds to the smallest subfield of Lm containing
both K1 and K2, which is justK1K2. The cosets of C1∩D1 in Im can be seen to be the sets Cr∩Ds

as desired. To see this consider the injective homomorphism Im/(C1 ∩ D1) → Im/C1 × Im/D1

which must be an isomorphism since [K1K2 : k] = [K1 : k][K2 : k] (or equivalently, since C1D1

corresponds to k, the smallest common subfield of K1 and K2, and so must be all of Im).
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Remark. In the above proof, Artin does not describe explicity what ϕ(x, y) is, but
from context it seems to be a polynomial in k[x, y]. Furthermore, to support the
congruences, the coefficients should be expressible as fractions of integral elements
with denominators not in p. Artin does not address the existence of such a poly-
nomial. Fortunately, there is straightforward way to prove the result that does not
rely such a polynomial ϕ(x, y):

As in the above proof, let p be a prime ideal of Cr ∩ Ds with Frobenius ele-
ment (σ, τ) ∈ G1 ×G2. By Lemma 1, and thinking of the Galois group of K1/k as
the quotient G1 × G2/G2 (with G2 embedded in G1 × G2 in the usual way) then
the Frobenius element of p for the extension K1/k is the coset

(σ, τ)G2 = (σ, 1)G2.

Under the identification of G1 ×G2/G2 with G1, which identifies the two descrip-
tions of the Galois group of K1/k, this element is σ. Thus σ = σr since σr is
the Frobenius element of p for K1/k. Similarly, τ = τs. Thus the Frobenius of p
is (σr, τt) as claimed.

Note that because of 3. (and the structure theorem of finite Abelian groups) we
can reduce the proof of Satz 2 to cyclic extensions of prime power degree. However,
in this paper we will only fully succeed in proving Satz 2 in the case of cyclic
extensions of prime degree.

4. Satz 2 holds for K = k(ζ) where ζ = e
2πi
m is an mth root of unity.12

Proof. Let C = {C1, . . . , Cn} be a class group associated to the field extension K/k
where, as usual, C1 is the identity class (die Hauptklasse). For now we allow any
modulus m for C, valid for K/k, that at least satisfies the following condition: every
prime ideal dividing mOk also divides m (we will later show that m = mOk is in
fact valid). The first step is to identify the prime ideals in C1 by determining a
splitting law. In other words, we wish to describe which prime ideals p of Ok prime
to m have the property that pOK factors into distinct primes of relative degree one.

Given such a prime ideal p, we know that p is unramified in K/k and that the
distinct mth-roots of unity in OK map to distinct mth roots of unity in the residue
field OK/P for any prime P above p. So OK/P contains all the mth roots of unity.
Since p splits in OK , the residue field Ok/p is isomorphic to OK/P and so itself
contains all the mth root of unity. In this case the order Np−1 of the multiplicative
group (Ok/p)× is divisible by m. In other words, Np ≡ 1 (mod m).

Conversely, suppose Np ≡ 1 (mod m) where p is a prime ideal of Ok not divid-
ing m. Then for each algebraic integer A = α0 + α1ζ + . . . in OK (with αi ∈ Ok)

ANp ≡ A (mod p).

So the residue field OK/P has size bounded by Np, and so equal to Np, for all
primes P above p. Thus p splits in OK .

We have now established our desired splitting law: for prime ideals p of Ok
prime to m, then p splits if and only if Np ≡ 1 (mod m). So by a fundamental

12An analogous proof can be produced for class fields of complex multiplication. This shows
how the reciprocity laws can be obtained through transcendental generators of the class fields.
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result of class field theory, for prime ideals p of Ok prime to m, we have p ∈ C1 if
and only if Np ≡ 1 (mod m).

We wish to extend this to showing that C1 consists the of the fractional ideals a
prime to m such that Na ≡ 1 (mod m), and in fact that all fractional ideals in a
given class Ci have the same norm modulo m. It turns out that we can do this by
showing that K is contained in the ray class field of k for modulus mOk, which will
allow us to choose m to be mOk. So let Cm be the ray class group of k modulo m.13

Suppose a and b are ideals of Ok in the same class in Cm. Then a = αb for
some α ∈ k positive in all embeddings of k into R and such that α ≡ 1 (mod m).
For such α we have

N(αOk) = |Nα| = Nα ≡ 1 (mod m),

so
Na ≡ NαNb ≡ Nb (mod m).

So all the ideals in a given class of Cm have the same norm, and we have a homomor-
phism Cm → (Z/mZ)×. Combining classes of norm 1 yields a subgroup Km of Cm
(the kernel of this norm homomorphism), and the quotient Cm/Km determines a
class group with the property that two fractional ideals (prime to m) are in the
same class if and only if they have the same norm.

In particular, C and Cm/Km both have the property that (with at most finitely
many exceptions) a prime ideal p is in the identity class if and only if Np = 1.
According to class field theory this means that the class fields of C and Cm/Km
have the same primes that split (with a finite number of possible exceptions), and
so must be equal. So K is the class field of the class group Cm/Km, where this class
group is taken to have modulus mOk. We can now fix m to be mOk, and identify C
with Cm/Km. In particular all fractional ideals of a given class Ci have the same
norm modulo m.

Since K = k(ζ), we can view the Galois group G of K/k to be a subgroup
of (Z/mZ)× where σ is identified with the integer t modulo m for which σζ = ζt.

Let Ci be a class of C, and assume that the fractional ideals of Ci have norm
congruent to ni modulo m. Let σ ∈ G be the Frobenius element of some prime p
of Ci. Since σA ≡ ANp (mod P) for all A ∈ OK and all primes P in OK above p,
we have in particular that

σζ ≡ ζNp ≡ ζni (mod P).

13The ray class group modulo m can be defined as Im/Pm where Im is the group of fractional
ideals prime to m and Pm is the subgroup of principal ideals generated by elements α ∈ k such
that α ≡ 1 (mod m) and such that α is positive in all real embeddings of k. It is a basic result
that every class of the ray class group contains integral ideals, and in fact prime ideals (by a
generalization of Dirichlet’s theorem).

The condition α ≡ 1 (mod m) can be interpreted as saying that α is the quotient β/γ of
algebraic integers such that β and γ are prime to m and such that β ≡ γ (mod m). In the
current proof we are concerned with the ideal m = mOk, and so we have σβ ≡ σγ (mod m)
for all σ in the Galois group of K/k. In particular, Nβ ≡ Nγ (mod m), which we can express
as saying that Nα ≡ 1 (mod m). This is the norm of α as an element of Q; the norm of the
associated principal fractional ideal is the absolute value of the norm of its generator α. Since
we assume that α is positive in all real embeddings of k in R, its norm is positive, and so we get
that N(αOk) ≡ 1 (mod m) where here we mean the norm of the associated principal fractional
ideal.
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However σζ = ζt for some integer t. So ζni ≡ ζt (mod P). As mentioned above,
distinct m-roots of unity in OK map to distinct mth roots of unity in the residue
field OK/P. We conclude that ζni = ζt, and so, identifying G with a subgroup
of (Z/mZ)× , we see that the Frobenius element is just ni ∈ (Z/mZ)×. In particular
all primes of Ci share the same Frobenius element, proving the first part of Satz 2.

By the multiplicativity of the norm map, the Frobenius map is a homomorphism.
Observe that the Frobenius map has kernel consisting of the class C1 alone since
only ideals in C1 have norm conguent to 1 modulo m. Since C and G have the same
number of elements (according to Takagi’s theory), the induced map C → G is an
isomorphism.

Remark. As mentioned above, it is not really necessary to prove the map is an
isomorphism since it being a homomorphism is enough. (See remark after claim 1.).

Remark. This gives Satz 2 specifically for modulus mOk.

Remark. At this point we know that at least a weak form of Satz 2 holds when k = Q
(using 2., 4. and the Kronecker-Weber theorem that every finite Abelian extension
of Q is a subfield of Q(ζ) for suitable ζ).

Remark. As with other proofs in this translation, the above proof is much expanded
and somewhat modified from Artin’s original proof in order to make the argument
more accessible to the modern reader. Here we provide more commentary for the
proof. Let p be prime to m. We can use the factorization of the polynomial xm− 1
in OK [x] into linear polynomials and its reduction modulo p to get a factorization
into linear polynomials (OK/P)[x]. Since the deriviative mxm−1 is relatively prime
to xm − 1, the roots in (OK/P)[x] must be distinct (we know that m is not in P
by our assumption on m). This explains why distinct mth roots of unity map to
distinct roots of unity in the residue field OK/P.

We also used the fact that (A1 + A2)N(p) ≡ A
N(p)
1 + A

N(p)
2 (mod p) for

all A1, A2 ∈ OK . This follows from the fact that N(p) is a power of the char-
acteristic p of Ok/p.

The next result gives Satz 2 for a class of Kummer extensions:

5. Suppose k contains the root of unity ζ = e
2πi
m where m = ln is a power of a

prime l. Then Satz 2 holds for all cyclic extensions K of k of degree m = ln.

Proof. It is a standard result of Galois theory14 that any such extension K is of the
form k

(
µ1/m

)
for some µ ∈ k and some fixed choice µ1/m of mth root. Observe also

that the Galois group G can be identified with the group of mth roots of unity: the
action of σ ∈ G is determined by image of µ1/m which must be of the form c(σ)µ1/m

for some mth root of unity c(σ). The map σ 7→ c(σ) is our desired isomorphism
of G with the group of mth roots of unity. For convenience we can take µ to be
in Ok so that µ1/m ∈ OK .

14See for instance Aluffi [1], Chapter VII, Proposition 6.19. In fact, this result is so central
to Galois theory that it was essentially stated by Galois himself in the case that m is prime, but
Galois’ argument has a gap (essentially he fails to show µ 6= 0). See Edwards [8], §46, Page 63 for
a discussion of the gap in Galois’ manuscript and a simple way to fix it in a manner that would
have been accessible to Galois himself.
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Suppose p is a prime ideal of Ok prime to l. Since ζ ∈ Ok, the residue field Ok/p
has a primitive mth root of unity. In other words m divides Np−1, the order of the
multiplicative group of the residue field Ok/p. In other words, Np ≡ 1 (mod m).

Therefore, (
µ1/m

)Np

≡ µ(Np−1)/mµ1/m ≡
(
µ

p

)
µ1/m (mod p)

where

(
µ

p

)
is the mth power character, whose values are mth roots of unity.15 In

particular, the Frobenius element for p is the element of G identified with the mth

root of unity

(
µ

p

)
.

The essential statement of the general reciprocity law, as given by Takagi, is

exactly that

(
µ

p

)
only depends on the class containing p (in fact, this holds for

any ideal a prime to µ).16 So let C be a class group for K/k with modulus m

(containing µ and l, say) for which we are certain that
(µ
a

)
depends only on the

class of a in C for all integral ideals relatively prime to m.17 It follows now that the
first part of Satz 2 holds for such a modulus m. The multiplicativity of the power
character implies that the Frobenius map is a homomorphism. From this we get
the rest of Satz 2.18

Remark. The above proof is perhaps the most challenging for the modern reader
to verify since it relies on results of Takagi that Artin does not spell out in detail
(nor do the modern sources I have consulted). The power character is well-known
though and is easy to define. Following Section 4.1 of [11], let k be a number field
containing all the mth roots of unity where m is a positive integer. Recall that the
reduction mod p map sends distinct mth roots of unity to distinct mth roots of
unity when p is prime to m. By Fermat’s little theorem we have

αNp−1 ≡ 1 (mod p)

for all α ∈ Ok outside of p, and so α(Np−1)/m reduces to an mth root of unity in

the residue field Ok/p. The power character
(
α
p

)
m

for such an α and p is defined

to be the unique m root of unity such that(
α

p

)
m

≡ α(Np−1)/m (mod p).

15See for instance Lemmermeyer [11], Section 4.1, or Ireland and Rosen [10], Section 14.2.
16Takagi [19].
17Artin’s original proof does not specify what modulus m will work here. Perhaps it is lµOk

or mµOk. In any case, it should be clear by looking at Takagi’s paper [19]. Until I have the
opportunity to consult Takagi’s paper, I will just use any modulus that gets the job done here.

In fact, Artin does not mention the modulus at all in the proof. He also does not specify what l
is, but it is pretty clear from context that l must at least be a prime. It could be that l is restricted
to odd primes. Again, it might require digging into Takagi’s paper.

18We get at least the weak form of Satz 2. Artin also mentions that

(
µ

p

)
can take on any

mth root of unity as a value and uses this to justify surjectivity of the Frobenius map, but as
mentioned after result 1. above this follows already from what we have done.
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This can be extended from p to other ideals prime to m by defining the symbol to

be multiplicative with respect to ideal multiplication. We can even define
(
α
β

)
m

for relatively prime elements nonzero elements α, β ∈ Ok, with β prime to m, by
considering the ideal generated by β.

The power character is central to the study of various reciprocity laws. For
example, the Eisenstein reciprocity law ([10], Section 14.2, or [11] Section 11.2) can
be elegantly expressed using the power character for the field k = Q(ζl):

Theorem (Eisenstein reciprocity). Suppose l is an odd prime, suppose ζl is a prim-
itive lth root of unity, and suppose a ∈ Z is not divisible by l. If α ∈ Z[ζl] is
relatively prime to a, and if α is a primary element (meaning that α is not a unit,
is prime to l, and is congruent to an element of Z modulo (1− ζl)2) then(α

a

)
l

=
( a
α

)
l
.

According to [11] (Section 11.4), Takagi [19] generalized this result from Q(ζl)
to any number field containing ζl. Apparently Takagi connected such reciprocity
laws with his class field theory, which then opened the door to the above result of
Artin and to Artin’s general reciprocity law.

Remark. Because of the close connection between the Frobenius element and
the power character illustrated in the above proof, it is common to introduce
reciprocity-like symbols for the Frobenius. The expression(

K/k

p

)
denotes the Frobenius element associated to p. As usual, here K/k is an Abelian
extension of number fields, and p is a prime ideal of Ok unramified in K/k. This
symbol is called the Artin symbol in honor of the ideas introduced in this paper.
When K/k is Galois but not Abelian, the Frobenius element depends on the choice
of prime above p, and this leads to the Frobenius symbol (introduced by Hasse)[

K/k

P

]
where P is a prime ideal of OK unramifield in K/k (See Section 3.2 of [11]).

6. Suppose K = k(α) is cyclic of degree r = ln over k where l is a prime,
and suppose Ω = k(ζ) is an extension of k of degree m where ζ = e2πi/l. So m
divides l − 1 and is necessarily prime to l. If Satz 2 holds for K∗ = Ω(α) over Ω
then Satz 2 holds for K over k.

Remark. This claim can be generalized, with essentially the same proof, to the
following:

Suppose K/k is an an Abelian extension of degree r, and suppose Ω/k is an
Abelian extension of degree m where m and r are relatively prime. Let K∗ = KΩ
be the composite field. If Satz 2 holds for K∗/Ω then Satz 2 holds for K/k as well.

In the following translation, Artin’s original argument has been adapted to
support this more general statement.
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Proof. We write our Galois groups as G(K/k), G(K∗/K), G(Ω/k), G(K∗/Ω),
and G(K∗/k), where K∗ is the composite field KΩ. Since r and l are relatively
prime, the intersection of K and Ω is k, and G(K∗/k) can be identified with

G(K/k)×G(Ω/k)

using the usual isomorphisms from Galois theory. This identification also allows us
to identify G(K/k) with G(K∗/Ω), and G(Ω/k) with G(K∗/K). We will write G for
both G(K/k) and G(K∗/Ω), and we will write H for both G(Ω/k) with G(K∗/K).
Thus, for example, if σ ∈ G then σ can be regarded as an automorphism of K
fixing k, or as the unique extension of this automorphism to an automorphism K∗

that fixes Ω.
Fix an ideal m ofOk that gives a valid modulus for the class group of K∗/k. So m

is also a valid modulus for the subextensions K/k and Ω/k. Let C(K∗/k), C(K/k),
and C(Ω/k) be the respective class groups all using modulus m. By replacing m
by a multiple if necessary we can also choose m so that Satz 2 holds for K/Ω with
modulus mOΩ

Step 1. The first step of the proof is to construct a class group C(K∗/Ω) with
modulus mOΩ together with an explicit isomorphism C(K∗/Ω) → C(K/k). We
begin by considering the relative norm map IΩ → Ik where IΩ is the group of
fractional ideals of Ω prime to mOΩ and where Ik is the group of fractional ideals
of k prime to m. Note that C(K/k) can be described as a quotient group of Ik and
so the composition

IΩ → Ik → C(K/k)

is a homomorphism. Let C0 be the kernel of this composition. Observe that if β ∈ Ω
is prime to mOΩ and satisfies β ≡ 1 (mod mOΩ) then the relative norm Nβ in k
must satisfy the congruence Nβ ≡ 1 (mod m) (since m is the intersection of mOΩ

with k). Furthermore, if β is also positive in all real embeddings of Ω into R then
the relative norm N(β) ∈ k is totally positive as well. In particular, the principal
ideal generated by such β must be in the kernel C0. This means that the quotient
group IΩ/C0 yields a class group for modulus mOΩ.

Let q be a prime ideal of OΩ prime to mOΩ, and let p be the intersection of q
with the subfield k. In particular the relative norm Nq ⊆ Ok is pf where f divides
the relative degree m. Observe that q splits in K∗ if and only if p splits in K, since f
does not divide r. But p splits in K if and only it is in the identity class of C(K/k).
Since f is prime to the order of C(K/k) this occurs if and only if pf in in the identity
class of C(K/k). In other words, q splits in K∗ if and only if q ∈ C0. By Takagi’s
results this means that K∗ is the class field extension of Ω corresponding to IΩ/C0.
So we write C(K∗/Ω) for IΩ/C0. Furthermore, the homomorphism IΩ → C(K/k)
induces an injective homomorphism C(K∗/Ω) → C(K/k). Since both groups have
order r, this map C(K∗/Ω) → C(K/k), induced by the relative norm map, is an
isomorphism.

Step 2. The second step is to use the isomorphism of step 1, and the assumption
of Satz 2 for K∗/Ω, to define a Frobenius isomorphism on the class group C(K/k).
For the isomorphism we will try the composition

C(K/k)→ C(K∗/Ω)→ G(K∗/Ω)→ G(K/k)

25



where the first map is the inverse of the isomorphism of step 1, the second is the
Frobenius isomorphism that exists by assumption of Satz 2 for K∗/Ω, and the
third map is the natural isomorphism given by restrictions of automorphisms. This
composition is an isomorphism, so to prove Satz 2 for K/k and modulus m we
just need to show that this maps the class of a prime ideal p to its corresponding
Frobenius element in G(K/k).

So fix a prime ideal p of Ok prime to m and let q be a prime ideal in OΩ

above p. Let (σ, τ) be the Frobenius element in G(K∗/k) = G×H corresponding
to p. Identifying G and H with subgroups of G × H, we can write this element
as στ and

στA ≡ ANp (mod p)

for all A ∈ OK∗ . So σA ≡ ANp (mod p) for A ∈ OK , and τA ≡ ANp (mod p)
for A ∈ OΩ (where here G is identified with G(K∗/Ω) and H is identified
with G(K∗/K)). Thus σ is the Frobenius element of p in G = G(K/k), and τ
is the Frobenius element of p in H = G(Ω/k). Note that the relative norm Nq is pf

where f is the order of τ in H. So

σfA ≡ σfτfA ≡ (στ)fA ≡ ANpf ≡ ANq (mod q)

for all A ∈ OK∗ (where here Nq is the absolute norm). Thus σf is the Frobenius
element associated with q. Note that f divides m = [Ω : k], so f is relatively prime
to r = [K : k]. This means that uf ≡ 1 (mod r) for some u, and (σf )u = σ.

The isomorphism C(K∗/Ω) → C(K/k) from step 1 sends the class of qu to the
class of its relative norm (pf )u. The class of pfu is the class of p since fu ≡ 1
modulo r. Thus the inverse isomorphism C(K/k) → C(K∗/Ω) maps the class of p
to the class of qu. Since the class of q maps to its Frobenius σf under the next
map C(K∗/Ω)→ G(K∗/Ω), the class of qu maps to

(σf )u = σfu = σ.

Finally, σ maps to σ under the map G(K∗/Ω) → G(K/k) (here we are identify-
ing G = G(K/k) with G(K∗/Ω)).

In conclusion the above composition C(K/k) → G(K/k) sends the class of a
prime ideal to its Frobenius element.

Remark. This shows that the weak version of Satz 2 for K∗/Ω implies the weak
version of Satz 2 for K/k.

Remark. We now see that Satz 2 holds for any Abelian extension of degree equal
to the product of distinct primes. To see this first assume that K/k has prime
degree l. Using 5. we have Satz 2 for K(ζ)/k(ζ) where ζ is a primitive lth root
of unity. By 6. we have Satz 2 for K/k as well. Finally 3. extends Satz 2 to K/k
when [K : k] the product of distinct primes, or more generally when the Galois
group is the product of cyclic groups of prime order.

Remark. So Artin has proved the following:

Theorem. Suppose K/k is an Abelian extension of number fields with Galois
group G. If G can be factored into cyclic groups of prime order then the weak
form of Satz 2 holds for K/k.
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6 Continuation of L(s, χ) to <(s) ≤ 1

We return to the general case, assuming Satz 2 holds for the Abelian case. We
write m(σ) for the order of an element σ ∈ G of the Galois group of K/k. For
each σ ∈ G, let gσ be the subgroup generated by σ, and let Ωσ be the subfield of K
of elements fixed by σ. So gσ is the Galois group of K/Ωσ.

Let ψ
(σ)
i for i = 1, . . . ,m(σ) be the irreducible characters of the Abelian group gσ

where ψ
(σ)
1 is the trivial character (the “Hauptcharakter” or the “principal char-

acter”). If we denote by χ
ψ

(σ)
i

the induced character of G then, by Satz 1, equa-

tion (15), we have the following which is valid up to a finite number of factors in
the Euler products:

L
(
s, ψ

(σ)
i ; Ωσ

)
= L

(
s, χ

ψ
(σ)
i

; k
)
.

As in (7), we decompose each χ
ψ

(σ)
i

and obtain the factorizations

(23) L
(
s, ψ

(σ)
i

)
=

x∏
ν=1

(L(s, χν))
r
(σ)
iν (i = 1, 2, . . . ,m(σ))

where each r
(σ)
iν is a nonnegative integer, and again with validity up to a finite

number of factors in the Euler product. By Satz 2, the left-hand side of (23)
corresponds to a traditional L-series whose extension to C and functional equation
was established by Hecke. We can use the equations (23) to solve for L(s, χν) in
order to prove the continuation of each L(s, χν). We can focus on the case ν > 1
since L(s, χ1) = ζk(s) is a Dedekind zeta function whose meromorphic continuation
is known.19

For ν > 1 we will show that L(s, χν) can be expressed in terms of a product of

rational powers of the L
(
s, ψ

(σ)
i

)
where σ varies in G and i varies in {2, . . . ,m(σ)},

avoiding the trivial character ψ
(σ)
1 .

Because of (23) it suffices to show that the system of x linear equations

(24)
∑
σ 6=1

m(σ)∑
i=2

r
(σ)
iν x

σ
i = δkν ν = 1, 2, . . . , x

can be solved for each given k in the sequence 2, . . . , x.20

Remark. Suppose xσi ∈ Q is a solution to the above system of linear equations (for

19Actually for any χi of degree 1 we have the continuation since that is the case that Hecke
considered (assuming Satz 2).

20Here Artin is using k as an index. Once we show (24) can be solved, k will return to its role
as denoting the base field.
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a fixed k), then

∏
σ 6=1

m(σ)∏
i=2

L
(
s, ψ

(σ)
i

)xσi
=

∏
σ 6=1

m(σ)∏
i=2

x∏
ν=1

L(s, χν)r
(σ)
iν x

σ
i

=

x∏
ν=1

∏
σ 6=1

m(σ)∏
i=2

L (s, χν)
r
(σ)
iν x

σ
i

=

x∏
ν=1

L(s, χν)δkν

= L(s, χk).

There is a subtlety here: the xσi are allowed to be rational and so the above quan-
tities are dependent on how the various rational powers are chosen. Depending on
the choices it is possible that the calculation is valid only up to a dth root of unity
where d is a common denominator for the xσi . So we should think of this equality
as holding up to a dth root of unity, and as usual up to a finite number of Euler
factors.

What we can safely say is that L(s, χk)d can be expressed in terms of a product

of integral powers of the L
(
s, ψ

(σ)
i

)
(ignoring a finite number of Euler factors), and

so L(s, χk)d has a meromorphic continuation to C. Another way to say this is that
there is a meromorphic continuation of L(s, χk) on a Riemann surfaces L mapping
onto C with fibers of size bounded by d. Or we can take the old point of view
that L(s, χk) is a “multivalued function” that has an analytic continuation outside
a discrete set of singularities.

As we will see, Artin suspects this continuation is single valued (that is, L can be
taken to be C). In other words, Artin hoped that L(s, χk) itself, and not a power,
has a meromorphic continuation. This was first proved by R. Brauer [6] in 1947.
Artin’s deeper conjecture that this continuation is actually analytic when χk 6= 1
is still open.

Now ri1 = 0 for each i > 1, so equation (24) with ν = 1 automatically holds.21

Thus we only need to consider ν ≥ 2. So in order for (24) to be solvable, it is
sufficient that the matrix(

r
(σ)
iν

)
σ 6= 1, i = 2, . . . ,m(σ); ν = 2, . . . , x

has rank x− 1. Here we regard the columns as being indexed by (σ, i) and rows as
being indexed by ν. For this matrix to have rank x−1 it is necessary and sufficient
that the x − 1 rows of this matrix be linearly independent. So we just need to to
show that the only solution to the system of linear equations

(25)

x∑
ν=2

r
(σ)
iν yν = 0

is the zero solution with yν = 0 (where the system contains an equation for
each (σ, i) where σ 6= 1 and 2 ≤ i ≤ m(σ).) So assume y2, . . . , yx is a solution

21 This follows from (6).
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to the system. Fix σ and τ ∈ gσ (where τ = 1 is allowed), and for each i from 2

to m(σ) multiply (25) by ψ
(σ)
i (τ). Now sum the resulting equations as i varies:

m(σ)∑
i=2

x∑
ν=2

r
(σ)
iν ψ

(σ)
i (τ) yν = 0.

Using (6) we can simplify this equation, giving the following equation for each
choice of σ ∈ G and τ ∈ gσ:

x∑
ν=2

(
χν(τ)− r(σ)

1ν

)
yν = 0

or
x∑
ν=2

χν(τ)yν =

x∑
ν=2

r
(σ)
1ν yν .

The right hand side does not depend on τ , so the left hand side has the same value
for all τ ∈ gσ. In particular,

x∑
ν=2

χν(τ)yν =

x∑
ν=2

χν(1)yν

for all τ ∈ gσ. Note the right hand side of this equation does not depend on σ, and
so the left hand side has the same value for all τ ∈ G. Call this value −y1, so

x∑
ν=1

χν(τ)yν = 0

for all τ ∈ G. Using (2), we see that for each i ∈ {1, . . . , x}

0 = 0 ·
∑
τ∈G

χi(τ−1) =

(
x∑
ν=1

χν(τ)yν

)∑
τ∈G

χi(τ−1)

=

x∑
ν=1

(∑
τ∈G

χν(τ)χi(τ−1)

)
yν

=

x∑
ν=1

nδνiyν = nyi.

So yi = 0 for all i ∈ {1, . . . , x}, establishing the linear independence claim, and so
the solvability of (24).

We can now express each L(s, χν) in terms of Abelian L-series, which gives us
a way to extend L(s, χν) with properties similar to those of traditional L-series.
For example, if χν is not the identity character (ν > 1) the expression only in-

volves L
(
s, ψ

(σ)
i

)
with i 6= 1, so L(s, χj) is regular and nonvanishing at s = 1.

Now we change our initial definition of L-functions. A solution to (24) ex-
presses L(s, χν) in terms of a product of rational powers of traditional L-series but
only up to a finite number of factors. We can modify the definition of L(s, χν) so
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that this expression is an exact equality, and then use (14) to define L(s, χ) for
general characters. This modified definition changes L(s, χ) up to a finite number
of factors, so all our results that are valid up to a finite number of factors will con-
tinue to hold with the modified definition. The resulting L(s, χ) will analytically
continue as a multivalued function on the whole plane C minus possibly a discrete
set of branch points, and going around a branch point will only change the value by
a root of unity. The functional equation of Hecke holds for the Abelian L-series, so
will yield a functional equation for our new L-series. This functional equation can
be used to show that the definition of our L-series is independent of the solution
to (24) used to build our new L-series.

Remark. Let xσi ∈ Q be the numbers occurring in a solution to (24) (where we
change k to j in what follows), then Artin proposes to use the resulting relation,
originally valid only up to a finite number of Euler factors, as a new, modified
definition:

L(s, χj)
def
=

∏
σ 6=1

m(σ)∏
i=2

L
(
s, ψ

(σ)
i

)xσi
.

This makes L(s, χj) a multivalued function on C minus a discrete set of branch
points, that is to say it is a meromorphic function on a Riemann surface covering C.
If d is the common denominator of the xσi then

L(s, χj)d =
∏
σ 6=1

m(σ)∏
i=2

L
(
s, ψ

(σ)
i

)dxσi
gives an exact equation between meromorphic functions, where the functions on the
right satisfy nice functional equations established by Hecke. From this we see that
Artin’s definition actually gives L(s, χj) as a meromorphic function on a Riemann
surface L which covers C with degree bounded by d.

If we want to derive a functional equation for this meromorphic func-
tion L(s, χj)d we need to observe that we can use the same solution to (24) for
writing L(s, χj)d in terms of Abelian L-series:

L
(
s, χj

)d
=
∏
σ 6=1

m(σ)∏
i=2

L
(
s, ψ

(σ)

i

)dxσi
where χj denotes the complex conjugate of χj , and ψ

(σ)

i denotes the complex con-

jugate of ψ
(σ)
i . The validity of this can be seen by oberving that (6) and (7) are

well-behaved under complex conjugation, and the induced character of ψ
(σ)

i satisfies

χ
ψ

(σ)
i

= χ
ψ

(σ)
i
.

This gives us a version of (23) for conjugate characters using the same inte-

gers r
(σ)
iν as the original (23), and so a solution to (24) will work for both L(s, χj)d

and L
(
s, χj

)d
.

As we will see, the functional equation for Abelian L series is of a form that
is closed under products, so gives a nice functional equation for L(s, χj)d. Artin
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further observes that the functional equation forces L(s, χj), or better L(s, χj)d,
to be independent of the solution to (24). In other words, there can be only one
definition for L(s, χj)d that satisfies such a functional equation and agrees with the
earlier definition up to a finite number of Euler factors.

The functional equations for the Abelian L-series, and hence our new L-series,
has the following form:22

L(1− s, χi) = aiA
s (Γ(s))

l
(1)
i

(
cos

sπ

2

)l(2)i (
sin

sπ

2

)l(3)i
L(s, χi).

Here l
(1)
i , l

(2)
i , l

(3)
i are rational, and A is a positive real number. Note that ai depends

on a choice of branch, and ai may change by a root of unity if we change the
branch.23

Remark. In verifying these claims it might be best to work with a power L(s, χj)d

that is meromorphic. As mentioned above, the transformation from χj and χj is
well-behaved and we can use the same solution to (24) for both χj and χj to get
compatible decompositions. So since the above functional equation has a form that
is closed under powers and products, we get a functional equation for L(s, χj)d,
and so for L(s, χj) for a choice of branch.

Remark. The form of the functional equation for Abelian L-series used here by
Artin is a bit different than the form it is usually given today, so it is worth a few
comments. (I have not consulted Hecke’s original paper, nor the paper of Landau
cited by Artin. Instead I consulted Tate’s thesis. Tate was a student of Artin in
the 1940s who showed how to replace Hecke’s approach with an approach using
harmonic analysis on the idèles.)

Suppose χ is an Abelian character with conductor f. Then Tate’s thesis gives a
form of the functional equation (see [7] pages 342–346) that leads naturally to the
version used by Artin. To describe this, let S be a finite set of places of k including
all divisors of the conductor f and all Archimedean places. Tate shows that

L(1− s, χ−1) =

∏
p∈S

ρp(s)
∏
p6∈S

(Ndp)s−1/2 χ−1(dp)

L(s, χ)

where ρp(s) denotes certain meromorphic functions related to χ and the place p,
which are explicitly calculated in Tate’s thesis ([7], Pages 317, 319, 322).
Here dp denotes the local different ideal. Recall that the absolute norm of the
product d =

∏
dp of these ideals gives the absolute discriminant |∆k| of the field k

(where p includes the non-Archimedean primes in S). The functions ρp(s) are as
follows:

• Suppose p is a real place. Consider a principal ideals generated by α ∈ k×
such that (1) α ≡ 1 (mod f), (2) α < 0 at p, and (3) α > 0 for all real places

22E. Landau, Über Ideale und Primideale in Idealklassen (concerning ideals and prime ideals
in ideal classes). Math. Zeitschrift Bd. 2, Seite 104, Satz LXVI.

23We can take ai to be a true constant and we can take l
(j)
i to be integers if we raise both sides

of the equation to an appropriate integral power.
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not equal to p. (Weak approximations assures such an α exists). Then if χ
has value 1 on such a principal ideal αOk then

ρp(s) =

(
2

(2π)s

)
cos
(πs

2

)
Γ(s),

but if χ has value −1 on αOk then

ρp(s) = −i
(

2

(2π)s

)
sin
(πs

2

)
Γ(s).

• If p is a complex place then

ρp(s) = (2π)1−2s Γ(s)

Γ(1− s)
= 2(2π)−2s sin(πs)Γ(s)2

=

(
2

(2π)s

)2

sin
(πs

2

)
cos
(πs

2

)
Γ(s)2

(Note this is just i times the product of the two formulas for real ρ). The first
equation is essentially the formula from Tate’s thesis. The other equations
are justified by the identity

Γ(s)Γ(1− s) =
π

sinπs

and the double angle identity for the sine function.

• If p is a ramified non-Archimedean place with conductor component fp then

ρp(s) = N(dpfp)s−1/2Wp(χ)

where Wp(χ) is a certain root of unity called the root number.

When we substitute these formulas for ρp(s) and simplify we obtain the formula

L(1− s, χ−1) = w

(
2

(2π)s

)n
(N(f)|∆k|)s−1/2 sin

(πs
2

)n1

cos
(πs

2

)n2

Γ(s)nL(s, χ)

where n = [k : Q], where n1 and n2 are two nonnegative integers with n1 +n2 = n,
where N(f) is the norm of the conductor of χ, and where w is a root of unity.

Remark. Artin makes the observation that the functional equation fixes the L-series
exactly, not just up to a finite number of factors. In other words, the functional
equation picks out a canonical representation of a class of L-series up to “finite
Euler factor equivalence”. Undoubtably this principal was well-known when Artin
wrote this article, but it might be helpful to supply the details. The following
Lemma helps make this clear and can be proved just by considering the location
of zeros and poles. Note this lemma can be generalized to a much broader class of
admissible functional equations, but we will stick to the concrete form given in the
paper.
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Lemma 2. Suppose L1(s), L̃1(s), L2(s), L̃2(s) are nonzero meromorphic functions
on C and assume the following two conditions. (i)

Li(s)

L̃i(1− s)
= ai A

s
i Γ(s)n

(1)
i

(
cos

sπ

2

)n(2)
i
(

sin
sπ

2

)n(3)
i

where ai ∈ C×, where n
(j)
i ∈ Z, and where Ai is a positive real constant. And (ii)

L2(s) = P (s)L1(s), L̃2(s) = P̃ (s) L̃1(s)

where

P (s) =

e∏
i=1

(1− εip−si )ui , P̃ (s) =

e∏
i=1

(1− εip−si )ui

where the product is over distinct pairs (εi, pi) composed of a prime pi ∈ Z and a
root of unity εi ∈ C×, and where ui ∈ Z. Then necessarily

L1(s) = L2(s)

as meromorphic functions.

Proof. Consider the function

R(s) =
L2(s)

L̃2(1− s)
· L̃1(1− s)

L1(s)
=

P (s)

P̃ (1− s)

which, according to the functional equations of assumption (i), has the form

R(s) = a As Γ(s)n
(1)
(

cos
sπ

2

)n(2) (
sin

sπ

2

)n(3)

for some a ∈ C×, n(j) ∈ Z, and A a positive real constant. Note that all the zeros
and poles of P (s) occur on the line <(s) = 0 (because psi can equal εi only on this

line), and all the zeros and poles of P̃ (1 − s) occur on the line <(s) = 1. So the
only possible real zeros and poles of R(s) occur when s = 0 or s = 1; in particular
the number of real zeros and poles of R(s) is finite. Since Γ(s) has no zeros and
poles for real s > 0, this forces n(2) = n(3) = 0 in order to avoid an infinite number
of real zeros or poles for R(s). Since Γ(s) has an infinite number of real poles (at
nonnegative integers), we can conclude that n(1) = 0 as well. So R(s) = aAs has
no zeros or poles.

As mentioned above, P (s) and P̃ (1 − s) have disjoint sets of zeros and poles.

Since the quotient R(s) has no zeros or poles, this forces both P (s) and P̃ (1 − s)
to have no zeros or poles. Consider

P (s) =

e∏
j=1

(1− εjp−sj )uj

and the zero sets of the factors 1− εjp−sj . We see that s is in the zero set of the jth
factor if and only if psj = εj . If εj = exp(2πrji) with rj ∈ Q, then s is in the zero
set if and only if s = 0 + ti with

t = 2π
rj + k

log pj

33



for some k ∈ Z. Observe that if pj = pl but εj 6= εl, then there can be no common
root to 1− εjp−sj and 1− εlp−sl simply because psj = psl cannot be equal to both εj
and εl. So consider the case where pi 6= pl. A common zero of 1−εjp−sj and 1−εlp−sl
would yield a real t with

t = 2π
rj + k

log pj
= 2π

rl + k′

log pl

where k, k′ ∈ Z. If, in addition, t is no zero, then we would be able to find two
nonzero integers a, b ∈ Z where

log pl
log pj

=
a

b

and so log pbl = log paj , or more simply pbl = paj , a contradiction. So the only possible

common zero of 1−εjp−sj and 1−εlp−sl is s = 0 (and that occurs only if εj = εl = 1).

Thus each factor 1 − εjp−sj of P (s) has a zero that is not a zero of any other
factor. Since P (s) has no zeros or poles this implies that each uj = 0. So P (s) = 1
as desired.

Corollary 3. Aside from a possible multiplication by a root of unity, the definition
of L(χj , s) is independent of the solution to (24).

Proof. Let {xσi } and {x̃σi } be two solutions to (24), where we use j for k in (24).
Fix a positive integer d such that each xσi d and x̃σi d is in Z and so L(χj , s)d is mero-
morphic whether we use the xσi or the x̃σi to define L(χj , s). Consider L1(s), L2(s)
be equal to L(χj , s)d according to the two expressions given by xσi and x̃σi respec-
tively. Note that L1(s) and L2(s) agree up to a finite number of Euler factor, and
the Euler factors where they differ are powers of terms of the form

1

1− εN(p)−s

for some prime ideal p in some number field and some root of unity ε. So N(p) = pl

for some prime p ∈ Z. By factoring the polynomial 1− εX l into linear factors, we
get the following:

1

1− εN(p)s
=

l∏
µ=1

1

1− εµp−s

where each εµ is a root of unity.
With these ideas we can verify that L1 and L2 satisfy the requirements of the

above lemma. So L1 = L2. This implies that the two definitions of L(χj , s) differ
only by a dth root of unity factor.

Remark. Note that the above lemma also implies that (23) is an exact equation

(up to root of unity), a fact that Artin uses in the calculation of l
(1)
i .

To determine l
(1)
i explicitly in the functional equation we use (23) and examine

the exponent of Γ(s) appearing in the functional equation. This is carried out in
the following lemma. In the Abelian case the exponent of Γ is [k : Q], and the
following lemma shows how to generalize this to the non-Abelian case.
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Lemma 4. The exponent of Γ(s) appearing in the functional equation of L(s, χi)
is equal to fi[k : Q] where fi is the degree of the representation associated to χi. In
other words fi = χi(1).

Proof. By equation (23) we see that the exponent of Γ(s) appearing in the functional

equation of L
(
s, ψ

(σ)
i

)
is equal to

x∑
ν=1

r
(σ)
iν l

(1)
ν

but from the functional equation for Abelian L-series we know that this exponent
should be the degree [Ωσ : Q]. Thus, for each σ ∈ G and i = 1, . . . ,m(σ),

x∑
ν=1

r
(σ)
iν l

(1)
ν = [Ωσ : Q] = [k : Q]

|G|
m(σ)

.

Multiply by ψ
(σ)
i (τ) with τ ∈ gσ, and sum over i:

m(σ)∑
i=1

x∑
ν=1

l(1)
ν r

(σ)
iν ψ

(σ)
i (τ) = [k : Q]

|G|
m(σ)

m(σ)∑
i=1

ψ
(σ)
i (τ).

Using (6) on the left and (3) on the right, this equation simplifies as

x∑
ν=1

l(1)
ν χν(τ) = [k : Q]|G| ετ

where ετ is 1 or 0 depending on whether τ = 1 or τ 6= 1.
The above equation is independent of σ, and so applies to all τ ∈ G. Now

multiply by χi(τ−1) and sum over τ ∈ G:

∑
τ∈G

x∑
ν=1

l(1)
ν χν(τ)χi(τ−1)=

∑
τ∈G

[k : Q]|G| ετχi(τ−1) = [k : Q]|G|χi(1) = [k : Q]|G|fi

but the left-hand simplifies by (2) to give |G| l(1)
i . So l

(1)
i |G| = fi[k : Q]|G|. In other

words, l
(1)
i = fi[k : Q].

We can determine some of the other constants in the functional equation in a
similar manner.

Remark. In the above proof Artin regards equation (23) not as an equation valid
up to a finite number of Euler factors but as an exact equation (or at least up to
multiplication by a root of unity). This is justified based because both sides of (23)
satisfy the right type of functional equations (see Lemma 2).

Here is another proof of the above lemma that might be of interest; it does not
use the strong version of (23). We begin with a special case of (7):

χ
ψ

(σ)
i

(1) =

x∑
ν=1

r
(σ)
iν χ

ν(1) =

x∑
ν=1

r
(σ)
iν fν
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for each σ and each i = 1, . . . ,m(σ). But the degree of the induced representation
is just the index [G : gσ] so

x∑
ν=1

r
(σ)
iν fν = χ

ψ
(σ)
i

(1) = [G : gσ] =
|G|
m(σ)

.

In what follows let xσi a solution to (24), (where we use j for k in that equation).
Then by the previous equation and (24)

∑
σ 6=1

m(σ)∑
i=2

xσi
|G|
m(σ)

=
∑
σ 6=1

m(σ)∑
i=2

x∑
ν=1

xσi r
(σ)
iν fν

=

x∑
ν=1

∑
σ 6=1

m(σ)∑
i=2

xσi r
(σ)
iν

 fν

=

x∑
ν=1

δjνfν

= fj .

With this identity we can easily calculate the exponent of the expression(
2

(2π)s

)
Γ(s)

in the functional equation for L(s, χj).24 From Hecke’s functional equation for

Abelian L-series we have that the contribution from each L
(
s, ψ

(σ)
i

)
is equal to

[Ωσ : Q] = [k : Q]
|G|
m(σ)

,

and so the total contribution for L(s, χj) is

∑
σ 6=1

m(σ)∑
i=2

xσi [Ωσ : Q] = [k : Q]
∑
σ 6=1

m(σ)∑
i=2

xσi
|G|
m(σ)

= [k : Q]fj .

We can argue similarly for the part of the function equation of L(s, χj) coming
from factors of the type (N(f)|∆k|)s−1/2 from the Abelian L-series factors. For

each L
(
s, ψ

(σ)
i

)
we can write this factor as (Bσi |∆σ|)s−1/2 where |∆σ| is the absolute

discriminant of the field Ωσ and Bσi is a positive integer. But

|∆σ| = Nσ|∆k|[Ωσ:k]

where ∆k is the discriminant of k and Nσ is some positive integer.25 So we can
write

(Bσi |∆σ|)s−
1
2 = (Bσi Nσ)s−

1
2

(
|∆k|s−

1
2

)[Ωσ:k]

.

24As usual, if it makes matters clearer take a power L(s, χi)
d that is meromorphic on C instead

of dealing with branches. It is clear how to adapt this argument to such a power.
25This is a standard result in algebraic number theory. See, for instance, Neukirch [13], Corol-

lary 2.10, page 202.
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In the functional equation of L(s, χj) the terms (Bσi Nσ)s−1/2 combine to give∏
σ 6=1

m(σ)∏
i=2

(Bi,σNσ)
xσi

s− 1
2

which in Artin’s notation is α
s− 1

2
j . Observe that αi is the product of rational powers

of positive integers.
The exponent of |∆k|s−1/2 in the functional equation of L(s, χj) will be given

by ∑
σ 6=1

m(σ)∑
i=2

xσi [Ωσ : k] =
∑
σ 6=1

m(σ)∑
i=2

xσi
|G|
m(σ)

= fj

where we have used the formula for fj established above. Thus we get the discrim-

inant factor
(
|∆k|fj

)s− 1
2 .

All in all, we get the following:

Satz 3. The primitive L-series L(s, χi) can be analytically continued to the whole
plane aside from a possibly discrete set of branch points. The orders of the branch
points are (unformly) bounded.26 For i > 1 the continuation of (each branch
of) L(s, χi) is holomorphic and nonzero in a neighborhood of s = 1. There are
zero-free neighborhoods of the line <(s) = 1, including a region on the plane defined
by σ ≥ 1 − c/ log t for some constant c > 0 (here we write a complex number as
s = σ + it with σ, t ∈ R). These L-functions satisfy a functional equation of the
form:
(26)

L(1− s, χi)
L(s, χi)

= εi

(
2

(2π)s

)mfi (
αi|∆k|fi

)s− 1
2

(
cos

sπ

2

)l(2)i (
sin

sπ

2

)l(3)i
(Γ(s))

mfi .

where ∆k is the discriminant of k, αi is a product of rational powers of (rational)
positive integers, εi are algebraic integers that depends only on the branch under
consideration with |εi| = 1, m = [k : Q], and fi = χi(1) is the degree of the

representation associated to the character χi. Furthermore, l
(2)
i and l

(3)
i are rational

numbers.

With these types of methods (“Auf demselben Wege”) it should also be possible
to establish the single-valuedness of our functions, of which one can easily convince
oneself in special cases. At least one can prove that the branching orders are
divisible only by primes dividing |G|.

Completely new methods will probably be needed to show that our L-Series
are analytic on all of C (aside from the L-series associated to the trivial character
(Hauptcharakter)).

26In other words, L(s, χi) can be meromorphically continued on some Riemann surface cover-
ing C of finite degree d. In fact, L(s, χi)d can be meromorphically continued on C itself for some
positive power d.
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Remark. As mentioned above, the methods of this paper show that L(s, χi)d is
entire for some positive integer d. In other words, L(s, χi) can be regarded as a d-
valued function. Artin mentions here that it should be possible to prove that d = 1
is possible (“die Eindeutigkeit unseren Funktionen”), in other words that L(s, χi) is
meromorphic on the whole plane. His next sentence means that we should at least
be able to find a d such that the only primes dividing d are divisors of |G|. The
former claim would have to wait until 1947 when it was proved by R. Brauer [6],
but later claim is, as Artin says, fairly easy to show: see the following remark.

It is still an open problem however on whether the Artin L-series is analytic
in general. It has been shown in some cases by Langlands and Tunnell, and these
cases were used by Wiles in his proof of Fermat’s Last Theorem.

Remark. We now outline an argument for Artin’s claim on branching orders for
primes p not dividing the order |G|. Recall that as part of the proof of the solvability

of (24), Artin shows that the matrix (r
(σ)
iν ) has linearly independent rows. We can

reduce this matrix modulo p, and by working in a suitable extension Fq of Fp
(containing roots of unity of order |G|) we can mimic the proof given above for Q
and show that it also works over Fp as long as |G| is not zero modulo p.

Once we know that the matrix (r
(σ)
iν ) has linearly independent rows modulo p,

we can find an x − 1 by x − 1 submatrix whose mod p reduction is nonsingular.
In other words, we can find a x − 1 by x − 1 submatrix whose determinant is an
integer not divisible by p. We can then find a solution to (23) in terms of rational
numbers whose denominators are not divisible by p. This gives a dp sheeted cover
of C such that L(s, χi) is meromorphic on the cover.

In particular, if one goes around a branch point of L(s, χi) then the value
will change value by a multiplicative factor that is a dp-root of unity. In other
words, the order of the branch is relatively prime to p. This applies to all primes
not dividing |G| as one goes around a branch point. Let d be the GCD of all
the dp. Going around any branch point changes the value by a d-th root of unity,
so L(s, ψi)d descends to a meromorphic function on C, and at the same time the
only primes dividing d are primes dividing |G|.

7 Conjecture of Frobenius (now called the Chebotaryov
Density Theorem)

With the the result just derived one can easily confirm a conjecture of Frobenius
using Formula (12).27

Remark. This density conjecture of Frobenius that Artin proves here is what we
today call the Chebotaryov (or Chebotarev) density theorem.28 Unbeknownst to
Artin, Nikolai Chebotaryov had already proved this result about a year earlier
in 1922 without using these new L-series. Artin gives a proof here, but it is requires

27See §5, Formulas (16) and (18) of the 1896 work of Frobenius cited in footnote 5.
28Nikolai Chebotaryov (1894–1947) was a mathematician from Ukraine and Russia. The

spelling “Chebotaryov” is a transliteration of the Ukrainian version of his name, while “Cheb-
otarev” is a transliteration of the Russian version. He was born in Ukraine and was educated at
Kyiv University. He later became a professor at Kazan University in Russia in 1928 where he
spent the remainder of his career.
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Artin’s reciprocity (Satz 2) in order to be assured that Satz 3 holds. Satz 2 was not
fully proved until 1927 when Artin proved his reciprocity law. It is interesting to
note that Artin’s 1927 proof of his reciprocity law was inspired by the 1925 German
versions of Chebotaryov’s proof of this density theorem that Artin read only after
he completed the current paper.

Not only can you derive the conjecture results, but you can also sharpen them
without effort. From formula (12) for logL(s, χ) it follows from known methods
that

(27)
∑
Np≤x

χi(p) = δ1iLi(x) +O
(
xe−a

√
log x

)
,

where δ11 = 1, but otherwise δ1i = 0.

Remark. By “known methods”, Artin is presumably referring to a combination of
methods used to prove Dirichlet’s theorem together with those needed for the the
prime number theorem generalized to number fields. As usual, the error term can
be greatly improved if one assumes the generalized Riemann hypothesis.

For example, a classical form of the prime number theorem is that

π(x) = Li(x) +O
(
xe−a

√
log x

)
,

for some a > 0. (See for instance Theorem 6.9, page 179 of [12]). Here π(x) is the
number of primes in Z less than x and

Li(x) =

∫ x

2

1

log t
dt.

The proof of the prime number theorem uses a zero-free region for ζ(s) similar to
that described in Satz 3 for Artin L-functions. (See Theorem 6.6, page 172 of [12]
for the classical zero-free region).

For a real number x and a conjugacy class C of G, let π(x,C) be the number
of prime ideals p of k with Np ≤ x whose Frobenius class is C.

We multiply (27) by χi(σ−1) where σ ∈ C, and sum over i. From (3) we get

|G|
|Cr|

π(x,Cr) =

x∑
i=1

∑
Np≤x

χi(σ−1)χi(p) = Li(x) +O
(
xe−a

√
log x

)
.

Satz 4. For a real number x and a conjugacy class C of G, let π(x,C) be the
number of prime ideals p of k with Np ≤ x whose Frobenius class is C. Then

(28) π(x,C) =
|C|
|G|

Li(x) +O
(
xe−a

√
log x

)
.

So the density of prime ideals in the class C is equal to the density of C in G.
In particular, in each class C there is an infinite number of prime ideals whose
Frobenius class is C.

39



This theorem is a generalization of Dirichlet’s theorem concerning primes in an
arithmetic progression, which (with the help of our general reciprocity law) can be
seen to be a special case.29 Its true meaning has yet to be clarified (“Seine wahre
Bedeutung harrt noch der Aufklärung”).

8 Multiplicative Relations Between L-Series

Satz 5. If the base field k is Q then there are no multiplicative relations between
the primitive L-Series.

Proof. Suppose xi are integers such that

x∏
i=1

(
L(s, χi)

)xi
= 1.

Then by (12), with k = Q,

logL(s, χi) =
∑
pν

χi(pν)

νpνs

where the sum is over all prime powers pν > 1. So when we sum over the χi we get

∑
pν

(
x∑
i=1

xiχ
i(pν)

)
1

νpνs
= 0.

Remark. One can tentavely think of the above equality as holding modulo 2πiZ.
But in any case the right hand side is a constant on the connected set <(s) > 1.
Since the left hand side is a Dirichlet series with constant term 0 this forces the
right hand side to be 0 as asserted (by the uniqueness of coefficients of a Dirichlet
series).

By the uniqueness of the coefficients of a Dirichlet series we have

x∑
i=1

xiχ
i(p) = 0

for all primes p (and in fact, the prime power pν coefficients vanish as well). Recall
from (10) that χi(p) denotes to the value of χi at the Frobenius of p.

By Satz 4, each conjugacy class C of G is the Frobenius class for an infinite
number of primes p. So

x∑
i=1

xiχ
i(τ) = 0

for all τ ∈ G. This implies, in the usual way, that xi = 0 for all i.

29Although Satz 2 is not fully proved in this paper, it is proved in special cases including that
of Q(ζ)/Q. When we work out the class field theory for Q(ζ)/Q, we find that Artin’s reciporocity
gives a correspondence between the set of primes of Q with a fixed Frobenius in the Galois group
of Q(ζ)/Q and the set of primes of Q in a certain arithmetic progression. So Satz 5 applied to the
fields Q(ζ)/Q is really just Dirichlet’s theorem.
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Remark. The last step is just due to the linear independence of characters. This
can be shown using (2).

Remark. We assumed xi were integers in the above proof since that is the main
case under consideration, but we can let xi be complex and use the above argument
to show that the functions logL(s, χ1), . . . , logL(s, χx), 1 are linearly independent
over C.

Satz 5 is not valid for general algebraic number fields k since conjugate prime
ideals can undermine the result. In fact, one can easily construct examples (even
with [k : Q] = 2) in which conjugate characters give rise to the same L-series. (In
fact, we will see some examples in Section 9 where different characters of a given
Galois group can give rise to the same L-series).

Based on Satz 5 we see how to find all the relationships between any finite
collection of ζ-functions or L-series. Find a Galois extension E of Q that contains all
the field extensions K/k used to define the zeta and L-series that you are interested
in. We can consider all of our given functions as being defined using characters
for E/Q, and all of these can be expressed in terms of primitive L-series for E/Q,
which are independent by Satz 5. We can use elimination to find all the relations
between our functions because any additional relations are ruled out by Satz 5. The
remark at the end of Section 2 shows we do not necessarily have to transition to a
common E to get our decompositions since extending the field does not change the
decomposition. (The common field was mainly used to prove uniqueness). So we
have reached a conclusion to the problem of determining multiplicative relations.

Remark. Here Artin to the independence of the common Galois extension E. If you
wish to break the dependency on a common Galois E/Q, you would want a way to
identify when two primitive L-series for E1/Q and E2/Q are equal. One way is to
agree to classify each primitive L-series by the minimal Galois extension E/Q for
which it arises. In other words, consider only irreducible faithful representations of
Galois groups with base field Q. Note that we have independence for the infinite
collection of such primitive L-series over Q (and the C-linear independence for their
repective logarithmic functions). When we combine this section with the results of
Section 2 we have the following result:

Corollary 5. Every Artin L-series factors uniquely as the product of primitive L-
series defined over Q.

Remark. Above Artin mentions using elimination to find relations. This essentially
means using commonplace matrix manipulations on integral matrices. We describe
this in more detail.

Suppose `1, . . . , `m gives a collection of L-series, and L1, . . . , Lt are all the prim-
itive L-series defined over Q that arises in the decompositions of `1, . . . , `m. Then
we can identify each `i with an element of Zt through the exponents of its decom-
position. Consider the Z-module homomorphism

Φ: Zm → Zt

sending (c1, . . . , cm) to the element of Zt associated to `c11 · · · `cmm . Then the kernel of
Φ is a free Z-module of rank bounded by m. The elements in this kernel give us our
relations between `1, . . . , `m, and Satz 5 assures us that these are all the relations.
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We can concretely calculate a basis for the kernel, i.e. identify all fundamental
relations for `1, . . . , `m, by using row and column operations on the matrix repre-
senting Φ to identify the kernel. The matrix representing Φ can be written down as
soon as we have decomposed each `i: its jth column is the exponents occurring in
the decomposition of `i (assuming we multiply the matrix on the left). For example,
using (29) below, the fundamental relations among ζ, ζ5, ζ6, ζ10, ζ12, ζ15, ζ20, ζ30, ζ60

discussed there can be calculated from calculating the kernel of the following:
1 1 1 1 1 1 1 1 1
0 0 0 0 1 0 1 1 3
0 0 0 0 1 0 1 1 3
0 1 0 1 0 1 2 2 4
0 0 1 1 1 2 1 3 5

 .
For example, the column vector (2, 0,−2, 0, 0, 0,−1, 1, 0) is in the kernel and so
gives the relation ζ2ζ−2

6 ζ−1
20 ζ30 = 1.

9 Applications to Icosahedral Fields

Finally we apply these results to icosahedral extensions, the simplest extensions
that cannot be obtained through a series of Abelian extensions. Let K/k be a
Galois extension of number fields with Galois group G isomorphic to the icosahedral
group. Observe that Satz 2 holds for intermediate Abelian extensions K ′/k′. To
see this observe that Abelian groups of the form H1/H2, where H1 is a subgroup
of G and H2 is a normal subgroup of H1, have order dividing 60 = 22 · 3 · 5. The
p-power part of such a group is a cyclic group of order dividing p for p = 3, 5, and
the 2-power part of such a group is either cyclic of order dividing 2, or is the (Klein)
four groups (“Vierergruppe”) since G has no elements of order 4. (Satz 2 has been
proved for Abelian Galois groups that are products of cyclic groups of prime order.)

Remark. The group G of symmetries of the icosahedron is isomorphic to the al-
ternating group A5, which is a simple group of order 60. The subgroups of A5

include cyclic subgroups of the following orders: 1, 2, 3, 5. There are also Klein
four groups, and dihedral subgroups of order 6 and 10. Finally there are subgroups
isomorphic to A4, and of course A5 itself. So there are intermediate fields of de-
gree 1, 5, 6, 10, 12, 15, 20, 30 and 60 over k. Note that two subgroups A5 of the same
order are actually conjugate, and so are isomorphic. This implies that two inter-
mediate subfields of K/k of the same degree over k must be isomorphic, and so
have equal zeta functions. Artin uses the notation Ωn for a field of degree n over k,
and ζn for its zeta function. We let ζ be the zeta function of the base field k,
so ζ = ζ1.

In G we have 5 conjugacy classes C1, C2, C3, C4, C5 with 1, 15, 20, 12, 12 elements
respectively. The densities of prime ideals in these classes must be

1

60
,

1

4
,

1

3
,

1

5
,

1

5
.

Furthermore, by the theory of characters developed by Frobenius, we have five
simple characters of G and their degrees are 1, 3, 3, 4, 5. We call the associated

primitive L-series ζ, L
(1)
3 , L

(2)
3 , L4, L5.
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We easily get the following factorizations using our methods (where the index
refers to the degree of the field over k):

ζ5 = ζ L4(29)

ζ6 = ζ L5

ζ10 = ζ L4L5

ζ12 = ζ L
(1)
3 L

(2)
3 L5

ζ15 = ζ L4 (L5)2

ζ20 = ζ L
(1)
3 L

(2)
3 (L4)

2
L5

ζ30 = ζ L
(1)
3 L

(2)
3 (L4)

2
(L5)

3

ζ60 = ζ (L
(1)
3 L

(2)
3 )3 (L4)

4
(L5)

5

Remark. Verifying (29) is an exercise. One way to verify it is to do the following:

• Identify all subgroups of A5, and the size of the intersections with each of the
conjugacy classes C1, . . . , C5.

• Derive explicit formulas for the five simple characters of A5.

• Use Frobenius reciprocity to calculate the induced characters of trivial char-
acters in terms of the irreducible characters of A5.

• Use (14) and Satz 1.

Proposition 6. If G = Gal(K/k) is the icosahedral group, then all the L-series
associated to representations of G are meromorphic. In other words, they are single
valued (outside of poles) when extended to C.

Proof. It is enough to verify this for irreducible representatives. The function ζ
and each ζn are already known to be meromorphic (Hecke). Note that the first two
equations of (29) show that L4 and L5 are meromorphic.

Observe that K is cyclic of degree 5 over an intermediate field Ω12 of degree 12
over k. There are four primitive L-series (in addition to ζ12) associated to K/Ω12

and these can all be expressed in terms of our primitive L-series. They are also
known to be entire (Hecke). Note that ζ60 factors as ζ12 times the product of these
four L-series. Comparing the expressions for ζ12 and ζ60 in (29), we see that the
product of these four L-series for K/Ω12 is

(L
(1)
3 L

(2)
3 )2 (L4)

4
(L5)

4
.

Each of these L-series is based on a one-dimensional representative of Gal(K/Ω12),
and so can be expressed in terms of a degree 12 induced representation of G. So
each decomposition gives 12 as the sum in terms of the integers 3, 4, 5. We conclude
that 12 is decomposed as 3 + 4 + 5 for each (note that 5 cannot occur twice in any
one of the sums, so 5 must occur exactly once in each sum). We conclude that two
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of these L-series factor as L
(1)
3 L4L5 and the other two as L

(2)
3 L4L5. (By the way,

this gives an example of a field with identical primitive L-series where conjugate

characters give the same L-series)30. So L
(1)
3 and L

(2)
3 are meromorphic.

The above proof also shows the following:

Proposition 7. The functions L
(1)
3 L4L5 and L

(2)
3 L4L5 are entire.

We can identify other entire function:

Proposition 8. The function L5 is entire.

Proof. We have an intermediate extension Ω5/k of degree 5, and an intermediate
extension Ω15/k of degree 15 such that Ω15 is a cyclic cubic extension of Ω5. This
gives us two nontrivial degree 1 characters of Gal(K/Ω5) of order 3, whose induced
characters are degree 5 characters of G. The associated L-series are entire since
they are Abelian L-series with nontrivial characters. The product of these series
is ζ15/ζ5 = (L5)2. Since the associated induced characters of G are of degree 5,
both L-series must be equal to L5. So L5 is entire. (And this gives another example
where distinct representations gives the same L-series).

Proposition 9. The products L
(1)
3 L

(2)
3 and L

(1)
3 L

(2)
3 L4 are entire.

Proof. The proof is similar to the last proof. The first comes from using the
quadratic extension Ω12/Ω6 where one produces an entire L-series equal to ζ12/ζ6.
The second comes from using the quadratic extension Ω20/Ω10 where one produces
an entire L-series equal to ζ20/ζ10.

Remark. We do not get anything essentially new from the other Abelian extensions.

So L5 and the combinations L
(1)
3 L4L5, L

(2)
3 L4L5, L

(1)
3 L

(3)
3 , and L

(1)
3 L

(2)
3 L4 (and their

products) are the only L-series we can prove are entire.

Remark. Let’s look at the other Abelian subextensions in addition to those treated
in the above two Propositions:

• Ω30/Ω15 gives the entire function ζ30/ζ15 = L
(1)
3 L

(2)
3 L4L5.

• K/Ω30 gives the entire function ζ60/ζ30 =
(
L

(1)
3 L

(2)
3 L4

)2

(L5)
2
.

• K/Ω20 gives the entire function ζ60/ζ20 =
(
L

(1)
3 L

(2)
3 L4

)2

(L5)
4

which must

factor into two Abelian (and so entire) L-functions corresponding to the two
nontrivial characters ψ and ψ−1 of the corresponding cyclic Galois group H3

of order 3. It turns out that the L-series associated to ψ and ψ−1 are equal

and so are both L
(1)
3 L

(2)
3 L4 (L5)

2
. To see this, note that the decomposition

30Note that any five cycle and its inverse are in the same conjugacy class of A4, which by
Frobenius reciprocity implies that L-series for conjugate characters for K/Ω12 will have the same
decomposition.

44



depends on the the multiplicities of the simple characters χi in the corre-
sponding induced representations, and these can be calculated using Frobe-
nius reciprocity: the multiplicities are respectively〈

ψ, resχi
〉
H3
, and

〈
ψ−1, resχi

〉
H3

where in these inner products we restrict χi to H3. However, a three cycle
in A5 and its inverse are in the same conjugate class of A5 and so have the
same value under χi, which means that these two inner products are actually
given by the same sum. This shows the multiplicities are the same.

• K/Ω15 gives the entire function ζ60/ζ15 = (L
(1)
3 L

(2)
3 )3 (L4)

3
(L5)

3
that factors

into three entire functions coming from Ω30/Ω15 extensions. Looking at the

earlier case Ω30/Ω15, we see these three functions are each L
(1)
3 L

(2)
3 L4L5.

• K/Ω12 was treated above (Proposition 6).

Observe that these entire functions are all just products of the entire products
already considered; nothing new.

Remark. Of the zeta functions from (29), we see that the following are divisible
by ζ with entire quotient: ζ6, ζ12, ζ30, ζ60. (This leaves the other half in question,
namely ζ5, ζ10, ζ15, ζ20). On can also verify immediately the relations between zeta
functions from my earlier article [2].

Remark. This shows Artin’s interest in the following question: if K/k then is ζK/ζk
entire? This helps motivate Artin’s conjecture that primitive L-series that are not
zeta functions are entire.

Artin’s earlier article [2], published in 1923, has some interesting relationships
between these zeta functions in the current case of G isomorphic to A5, the icosa-
hedral group. Some of these include

ζ20 ζ
2 = ζ2

5 ζ12, and ζ30 ζ
2 = ζ2

6 ζ20.

These are immediate given (29) above.

Hamburg, Mathematics Seminar, July 1923
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