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This document develops the concept of convergence of sequences. It is the third
document in a series concerning the basic ideas of general topology, and assumes
as a prerequisite the contents of the first two documents. It also assumes some
familiarity with ordered sets.

The documents in this series are intentionally concise and are most suitable
for a reader with at least a casual familiarity with topology who is ready to work
through a systematic development of some of the key ideas and results of the sub-
ject. This series is light on counter-examples and skips some less essential topics.
Can this series be used as a first introduction to general topology? I believe it can
if used in conjunction with a knowledgeable instructor or knowlegeable friend, or if
supplemented with other less concise sources that discuss additional examples and
motivations. This series might also serve a reader who wishes to review the subject,
or as for a quick reference to the basics.

This is a rigorous account in the sense that it only relies on results that can
be fully proved by the reader without too much trouble given the outlines pro-
vided here. The reader is expected to be versed in basic logical and set-theoretic
techniques employed in the upper-division curriculum of a standard mathematics
major. But other than that, the subject is self-contained.! I have attempted to give
full and clear statements of the definitions and results, with motivations provided
where possible, and give indications of any proof that is not straightforward. How-
ever, my philosophy is that, at this level of mathematics, straightforward proofs
are best worked out by the reader. So some of the proofs may be quite terse or
missing altogether. Whenever a proof is not given, this signals to the reader that
they should work out the proof, and that the proof is straightforward. Supplied
proofs are sometimes just sketches, but I have attempted to be detailed enough that
the prepared reader can supply the details without too much trouble. Even when
a proof is provided, I encourage the reader to attempt a proof first before looking
at the provided proof. Often the reader’s proof will make more sense because it
reflects their own viewpoint, and may even be more elegant. There are several
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examples included and most of these require the reader to work out various details,
so they provide additional exercise.

1 Sequences

We can understand a sequence as a type of function:

Definition 1. An N-indexed sequence (z;);en in a set S is a map N — S. The
image of ¢ € N is called the ith term or the i-term of the sequence, and is typically
written with a subscript denoting ¢ affixed to a symbol associated to the sequence,
as in ‘z;’.

Here we allow other totally ordered index sets I as long as they are order-
isomorphic to N. In this case, an I-indexed sequence (z;);cy in S is a map I — S,
and we adopt the notational conventions used for N-indexed sequences. (In fact, as
we will see, the requirement that I be order isomorphic to N is not needed in some
of the more elementary results.)

Let (x;);cr be a sequence in S. The image {z; | i € I} in S is sometimes written
as {x;}ier, or just {z;}.

As in calculus the most basic property of a sequence is its limit:

Definition 2. Let X be a topological space, and let (x;);c; be a sequence in X.

The sequence (z;);c; converges to x € X if for every open neighborhood U of x
there is an n € I such that x; € U for all ¢ > n. In this case we say that x is a limit
of (xi)iej.

We say that the sequence (z;);er converges if it has such a a limit in X.

An accumulation point of a sequence (z;);er in X is a point x such for every
open neighborhood U of x and n € I there is an ¢ > n such that z; € U.

Lemma 1. Suppose X is a topological space. If a sequence (x;);cr has limit x
then x is an accumulation point.

Lemma 2. Suppose X is a Hausdorff space. If a sequence (x;);cr has limit x then
this limit x is the unique accumulation point.

Corollary 3. Suppose X is a Hausdorff space. Then a convergent sequence has a
unique limit.

Example 1. There are examples of non-Hausdorff spaces where convergent se-
quences do not have unique limits. For example, consider Z with the finite com-
plement topology (where nonempty sets are open if and only their complement is
finite). Then every point of Z is a limit of the sequence a; = 1.

Remark. The above results do not require that I have order type equal to N.
However, we will use this assumption in the next lemma, and in most of the results
in the sections that follow. (Recall that limit point of a subset was defined in Part 1
of this series).

Lemma 4. Suppose X is a Hausdorff space. If x is a limit point of {x; | i € I}
then x is an accumulation point of (z;)cr.



2 Closure and Sequences

Proposition 5. Suppose x € X has a countable neighborhood basis. Let S C X.
Then x is in the closure of S if and only if there is a sequence (x;)ien in S with
limit x.

Proof. In one direction (where we assume x € S), choose z; € S to be in the
intersection BoNB1N---N By where B; is the ith neighborhood of a given countable
neighborhood basis. O

Remark. We need the axiom of choice in the above proof to make a simultaneous
choice of xy.

3 Continuity and Sequences

Proposition 6. Suppose that f: X — Y is a function between topological spaces
that is continuous at x € X. Suppose (x;)icr is a sequence in X with limit x. Then

the sequence (f(x;)) has limit f(x).

Remark. We can prove the above without assuming that I is order-isomorphic to N.
In what follows we assume that all sequences have index set order-isomorphic to N.

Definition 3 (Continuous for Sequences). Let f: X — Y be a function between
topological spaces. We say that f is continuous for sequences at a point x € X
if the following holds: for all sequences (x;) converging to z, we have that (f(x;))
converges to f(z).

If f is continuous for sequences at each point x € X then we say that f is
continuous for sequences.

Proposition 6 can be restated as follows:

Proposition 7. If f: X — Y is continuous at a point x then f is continuous for
sequences at x.

The main result of this document is that the converse is true in common situa-
tions:

Theorem 8. Suppose f: X — Y is a function between spaces and suppose v € X
has a countable neighborhood basis. If f is continuous for sequences at x € X
then f is continuous at x.

Proof. We prove the contrapositive. Suppose f is not continuous at x. Let V be an
open neighborhood of f(x) such that, for all open neighborhoods U of x we have
that f[U] is not contained in V. Let A = f~1[V¢] where V¢ is the complement
of V in Y. Observe that x is in the closure of A. So by Proposition 5 there is a
sequence (z;) in A converging to xz. Each f(z;) is outside of V', so that (f(x;)) does
not converge to f(z). Thus f: X — Y is not continuous for sequences at z € X. [

Corollary 9. Suppose f: X — Y is continuous for sequences, and suppose every
point of X has a countable neighborhood basis, then f is continuous.



