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This document concerns general products of topological spaces.1 It is the fifth
document in a series concerning the basic ideas of general topology. This series
is written for a reader with at least a rough familiarity with topology, including
examples, who is ready to work through a systematic development of the subject.
This series can also serve as a reference or a review of topology. I have attempted to
give full and clear statements of the definitions and results, with brief motivations
provided where possible, and give indications of any proof that is not straightfor-
ward. However, my philosophy is that, at this level of mathematics, straightforward
proofs are best worked out by the reader. So some of the proofs may be quite terse
or missing altogether. Whenever a proof is not given, this signals to the reader that
they should work out the proof, and that the proof is straightforward. Supplied
proofs are sometimes just sketches, but I have attempted to be detailed enough that
a prepared reader can supply the details without too much trouble. Even when a
proof is provided, I encourage the reader to attempt a proof first before looking
at the provided proof. Often the reader’s proof will make more sense because it
reflects their own viewpoint, and may even be more elegant.

1 Required Background

This document is the fifth document in a series devoted to the basic ideas of general
topology and we assume some of the results from the previous documents. Most
of what we need is in the first document, Part 1: First Concepts. In the last
main section (Section 5) we use the definition of a Hausdorff space from Part
2: Hausdorff Spaces, and the definition of a convergent sequence from Part 3:
Sequential Convergence. We don’t need anything from the fourth document, Part
4: Metric Spaces.

In the earlier document (Part 1: First Concepts) we considered Cartesian prod-
ucts of two sets, but here we need general Cartesian products. So officially we
assume the reader is familiar with such Cartesian products in set theory. We re-
view this set theoretical background in this section, which might be enough for
many readers.

∗Copyright c© 2012–2020 by Wayne Aitken. Version of February 8, 2020. This work is made
available under a Creative Commons Attribution 4.0 License. Readers may copy and redistributed
this work under the terms of this license.

1This material on products overlaps with Munkres 1975, Chapter 2 (112 to 114).
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We start with the idea of an indexed family. This generalizes a sequence, but
where the index set is not assumed to be ordered in any way. Let I be a set which we
call the index set. An I-indexed family c is just a function with domain I and some
set as a codomain.2 We usually write ci instead of c(i) for the image of i ∈ I, using
sequential notation in place of functional notation. We write the family as (bi)i∈I
or just (bi) when the index set does not need to be mentioned.

We are interested in families of sets in this section but will be interested families
of topological spaces in the following sections. If (Xi)i∈I is a family of sets we can
define the union and intersection⋃

i∈I
Xi and

⋂
i∈I

Xi

in the usual way. It follows from the axioms of set theory that this union is a set, and
if I is nonempty then so is the intersection. (The intersection of an empty family
can be specified as the “universe” where the universe is usually clear from context).
We write

⋃
Xi and

⋂
Xi where the index set does not need to be mentioned.

Let (Xi)i∈I be a family of sets. Then the Cartesian product is the following set:∏
i∈I

Xi
def
= {(xi)i∈I | xi ∈ Xi}

where any (xi)i∈I in the above definition is understood to be a family I →
⋃
Ui.

In particular, the Cartesian product is a subset of the set of such functions. This
guarantees that the Cartesian product is a set in the sense of axiomatic set theory.
We can write

∏
Xi when the index set I does not need to be specifically mentioned.

Observe that if Xi is the empty set ∅ for some i in the index set then
∏
Xi = ∅.

The converse holds and is a significant fact: it is equivalent to the axiom of choice.
We also note that the axiom of choice will be needed in the proof of Proposition 7.

Definition 1 (Projection maps). Let
∏
i∈I Xi be a Cartesian product of sets, and

let j ∈ I. Then the jth projection map πj is the function

πj :
∏
i∈I

Xi → Xj

defined by the rule (xi) 7→ xj . Observe that this function is surjective.

Every function of the form f : Z →
∏
i∈I Xi can be described in terms of

component functions:

Definition 2 (Component functions). Let
∏
i∈I Xi be a Cartesian product of sets,

and let f : Z →
∏
i∈I Xi a a function. For each j ∈ I, the j-component function fj

of f is the composition πj ◦ f where πj is the j-projection map.
In particular, if f(z) = (xi) then fj(z) = xj . So we have

f(z) = (fi(z))i∈I .

2The codomain is general and can be even be taken to be the universal class V of set theory.
By the axiom of replacement in ZF set theory, the image will always be a set. By choosing this
image, or any set containing this image, we can always assume the codomain is a set.
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The universal property for Cartesian products of sets allows us to define f in
terms of component functions fj :

Proposition 1 (Universal Property). Let (Xi)i∈I be an indexed collection of sets,
let Z be set, and for each i ∈ I let fi : Z → Xi be a function. Then there is a
unique function

f : Z →
∏
i∈I

Xi

such that fj = πj ◦ f for each j ∈ J , where πj is the j-projection map.

We assume the reader is familiar with the above proposition, but if not the proof
is straightforward.

2 Products of Spaces

In this section let (Xi)i∈I be an indexed family of topological spaces with Carte-
sian product

∏
i∈I Xi. In particular, each element of

∏
i∈I Xi is an I-indexed

family (xi)i∈I where xi ∈ Xi. Here I is allowed to be an infinite set.
Let B be the collection of subsets of

∏
i∈I Xi of the form

∏
i∈I Yi where

(1) each Yi is open in Xi, and (2) Yi = Xi for all but a finite number of i ∈ I.

Lemma 2. The collection B is closed under finite intersections. In particular, this
collection is a potential basis for the set

∏
i∈I Xi.

Definition 3. The product topology on
∏
i∈I Xi is the topology generated by the

above potential basis. In particular, B above is a basis for this topology.

Remark. The requirement (2) Yi = Xi for all but a finite number of i ∈ I for B
will seem unmotivated at first. However, Proposition 9 and its corollary, as well as
Proposition 13, are clearly desired results, and requirement (2) is necessary for the
proofs of these results.

Remark. By comparing bases, we can derive some natural homeomorphisms. For
instance, the above definition gives the binary Cartesian product X1×X2 the same
topology as defined in the first document of this series (where here I = {1, 2}). In
the case where I is a singleton, the product is naturally homeomorphic to the space
itself:

∏
i∈{1}Xi is canonically homeomorphic to X1.

The following proposition can be used to give natural homeomorphisms in other
situations. For example, it shows that for triple products (where I = {1, 2, 3},
say), the resulting topological space is naturally homeomorphic to the topological
space (X1 ×X2)×X3.

Proposition 3. Let I and J be disjoint sets. If XI =
∏
i∈I Xi and XJ =

∏
i∈J Xi,

then XI ×XJ is naturally homeomorphic to
∏
i∈I∪J Xi.

Proof. Take the natural bijection between the underlying sets. This bijection in-
duces a bijection between subsets of the domain and subsets of the codomain. We
can choose a basis for each topology so that they correspond via the induced bijec-
tion. This means that the map, and its inverse are continuous.
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Remark. We can also use bases to show that products are well-behaved with respect
to permutations of the spaces (i.e., reindexing by J where I and J are bijective).
In particular, if σ : I → J is a bijection, and if Yj = Xσi for each i ∈ I, then the
natural bijection between

∏
i∈I Xi and

∏
j∈J Yj is a homeomorphism.

If each component Xi has a specified basis, we can give an associated basis for
the product:

Proposition 4. Suppose (Xi) is a family of topological spaces and that Bi is a
basis for Xi. Consider the collection B of sets

∏
Yi such that each Yi ∈ Bi and

such that Yi = Xi for all but a finite number of indices i. Then B is a basis of the
space

∏
Xi.

3 Products of Subspaces

In this section let (Xi)i∈I be a family of topological spaces.
Suppose Yi is a subset of Xi for each i ∈ I. Then

∏
Yi has two topologies: (i) the

subspace topology as a subspace of
∏
Xi, and (ii) the product topology on

∏
Yi

where each Yi is considered a subspace of Xi. We observe that these topologies are
the same; they consist of the same collection of open subsets:

Lemma 5. Suppose that Yi be a subset of Xi for each i ∈ I. Then the set
∏
i∈I Yi

can be given a topology in two natural ways: (i) as a subspace of
∏
i∈I Xi and (ii) as

a product space where each Yi has the subspace topology induced from Xi. These
two topologies on

∏
i∈I Yi are in fact the same.

Proof. It is enough to describe a common basis for the two topologies. We start
with the set theoretic identity, for Ai and Yi subsets of Xi:∏

i∈I
(Ai ∩ Yi) =

∏
i∈I

Ai ∩
∏
i∈I

Yi.

Consider the collection of sets of the form
∏
i∈I(Ai ∩ Yi) where Ai is open in Xi

and Ai = Xi for all but a finite number of i ∈ I. Observe that this is a basis for
both topologies.

The product of open subsets is not necessarily open if the index set is infinite.
However, the product of closed sets is closed:

Proposition 6. Suppose Zi is closed in Xi for each i ∈ I. Then the product
∏
Zi

is closed in
∏
Xi

Proposition 7. For each i ∈ I suppose that Yi is a subset of Xi. Then∏
Yi =

∏
Yi.

So closure “commutes” with products.

Proof. One direction is a corollary of the previous proposition. Note that the other
direction uses the axiom of choice.
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4 Functions for Products

We suppose
∏
i∈I Xi is a product of topological spaces.

Proposition 8. The projection maps πj :
∏
Xi → Xj are continuous.

Proposition 9. A function f : Z →
∏
Xi is continuous if and only if the compo-

nent function fj = πj ◦ f is continuous for each j ∈ I.

Proof. One direction is straightforward since the composition of continuous func-
tions is continuous. For the other direction, we first derive an intersection formula
for the preimage of a subset of the form

∏
Yi where each Yi ⊆ Xi. By this the

inverse image of a basis element is the finite intersection of open sets, so is open.

As a corollary, we see that a topological product is a product in the sense of
category theory. The following is the topological version of Proposition 1 (and its
proof should use Proposition 1 as well as the above proposition):

Corollary 10. Let (Xi)i∈I be an indexed collection of spaces, let Z be space, and
for each i ∈ I let fi : Z → Xi be a continuous function. Then there is a unique
continuous function f : Z →

∏
i∈I Xi such that fi = πi ◦ f for each i.

We can use the above to prove the following:

Proposition 11. If each fi : Xi → X ′
i is continuous then so is the function∏

i∈I
Xi →

∏
i∈I

X ′
i

whose j-coordinate function is (xi) 7→ fjxj for each j ∈ I. In other words, the jth
coordinate function is fj ◦ πj.

5 Other Properties

Let
∏
i∈I Xi be a product of topological spaces.

Proposition 12. If each Xi is Hausdorff, then
∏
i∈I Xi is Hausdorff.

Proposition 13. Let (pj)j∈J be a sequence of points in
∏
i∈I Xi. For each j ∈ J

and i ∈ I let pj,i be the i-coordinate of pj, so pj = (pj,i)i∈I . Let (xi) ∈
∏
Xi. Then

the sequence (pj) converges to the point (xi) if and only if the sequence (pj,i)j∈J
in Xi converges to the point xi in Xi for each i ∈ I.

Remark. When speaking of the convergence of sequences we usually require that
the index set be order-isomorphic to N, but the proof of the above is valid for any
totally ordered J .
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In future documents we will define the concept of compactness. After that we
will take up Tychnonoff’s theorem: the product of compact topological spaces is
compact.

Appendix: Restricted Products

There is a variant of products that sometimes arise, for example in number theory
(in topological rings called “adeles”).

Definition 4. Let (Xi)i∈I be a family of topological spaces, and for each i ∈ I
let Ui be a designated open subspace of Xi. The the restricted Cartesian product is
defined to be the subset of

∏
Xi consisting of the elements (xi) with the following

property: xi ∈ Ui for all but finitely many i ∈ I.

Our aim is to give the restricted Cartesian product a topology. Let (Xi)i∈I
and (Ui)i∈I be as above, and let P be the restricted Cartesian product. Let B be
the collection of subsets of P the form

∏
Wi such that Wi is open in Xi and such

that Wi = Ui for all but a finite number of i ∈ I.

Lemma 14. The collection B is closed under finite intersections. In particular, B
is a potential basis for P .

Definition 5. Let (Xi)i∈I be a family of topological spaces, and for each i ∈ I
let Ui be a designated open subspace of Xi. Let P be the associated restricted
Cartesian product. Then the topology on P is defined to be the unique topology
with basis B where B is as defined above.
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