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This document introduces the concept of a metric space.1 It is the fourth
document in a series concerning the basic ideas of general topology, and it assumes
the results from the earlier documents as well as basic facts about the ordered
complete field R.

This series is written for a reader with at least a rough familiarity with topology,
including examples, who is ready to work through a systematic development of the
subject. This series can also serve as a reference or a review of topology. I have
attempted to give full and clear statements of the definitions and results, with
motivations provided where possible, and give indications of any proof that is not
straightforward. However, my philosophy is that, at this level of mathematics,
straightforward proofs are best worked out by the reader. So some of the proofs
may be quite terse or missing altogether. Whenever a proof is not given, this
signals to the reader that they should work out the proof, and that the proof is
straightforward. Supplied proofs are sometimes just sketches, but I have attempted
to be detailed enough that the reader can supply the details without too much
trouble. Even when a proof is provided, I encourage the reader to attempt a proof
first before looking at the provided proof. Often the reader’s proof will make more
sense because it reflects their own viewpoint, and may even be more elegant.

1 Logical Dependencies

The following section (Section 2) is logically independent from the earlier documents
in the series. The section only uses basic set theory (including functions) and some
facts about the field R of real numbers. More specifically it uses the fact that R is an
ordered field such that every nonnegative element has a square root. Completeness
(LUB and GLB properties) are also used, but only in the definitions at the end of
the section starting with Definition 7. Other sections also require knowing that Q
is a countable dense subset of R. We assume a very basic knowledge of Rn, with
the operation of addition, and the inner product on Rn.

The next two sections (Sections 3 and 4) consider the topology of metric spaces
and so depend on the first two documents in the series including the notion of

∗Copyright c© 2017–2020 by Wayne Aitken. Version of February 2, 2020. This work is made
available under a Creative Commons Attribution 4.0 License. Readers may copy and redistributed
this work under the terms of this license.

1This material on metric spaces overlaps with Munkres 1975, Chapter 2 (Sections 9 and 10:
pages 117 to 134).
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Hausdorff space. The final section (Section 5) uses sequences and so depends also
on the third document of the series.

2 Metrics

Metric spaces provide important examples of topological spaces. Metric spaces are
simply sets equipped with distance functions. Since we have many intuitions build
up from the notion of distance, metric spaces are conceptually more accessible than
abstract topological spaces. It may therefore be advisable to learn about metric
spaces before learning about topological spaces in general.

It turns out that we really only need four properties of classical distance in our
topological arguments. So we define the general notion of a metric in terms of these
key properties.

Definition 1 (Metric). A metric on a set X is a function d : X×X → R satisfying
the following four laws:

(i) d(x, y) ≥ 0 for all x, y ∈ X.

(ii) d(x, y) = 0 if and only if x = y.

(iii) d(x, y) = d(y, x) for all x, y ∈ X.

(iv) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X (the triangle inequality).

Definition 2 (Metric Space). A set equipped with a metric is called a metric space.

Definition 3 (Open and Closed Balls). Let r > 0, and x ∈ X. The open ball
centered at x with radius r is the set of all y such that d(x, y) < r. We write this
as B<r(x), or Bd,<r(x) if we wish to show its dependency on d.

For r ≥ 0 we define the closed ball B≤r(x) in a similar manner with the condition
that d(x, y) ≤ r.

We also write B<r(x) as Br(x), and B≤r(x) as Br(x). The later notation is
potentially confusing since a closed ball is not necessarily the closure of the open
ball.

Example 1. If X = R, then d(x, y) = |x − y| is a metric. This can be seen from
basic facts about absolute values, or can be seen as a special case of the following
proposition. Observe that for R with this metric, the open ball B<r(x) is the open
interval (x− r, x+ r) and the closed ball B≤r(x) is the closed interval [x− r, x+ r].

Proposition 1. Consider the Euclidean distance d(x, y) =
(∑n

i=1(xi − yi)2
)1/2

on Rn. This function is a metric.
(Here x, y ∈ Rn and x = (x1, . . . , xn) and y = (y1, . . . , yn).)

Proof. We use basic facts about ordered fields, together with the fact that R is
an ordered field closed under nonnegative square roots. Most properties follow
immediately, so we focus on the triangle inequality.
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In what follows, we define the dot product of elements of Rn in the usual way.
This dot product is clearly symmetric and bilinear. If x ∈ Rn we define the norm |x|
to be the (nonnegative) square root of the dot product x · x. So in this notation

d(x, y) = |x− y|.

Our first goal is to see that x · y ≤ |x| · |y| for all x, y ∈ Rn. To see this, observe
that for all s, t ∈ R we have

|sx+ ty|2 = (sx+ ty) · (sx+ ty) = s2|x|2 + 2st(x · y) + t2|y|2

and this quantity is nonnegative. If x and y are non-zero then let s = |x|−1

and t = −|y|−1, then the nonnegativity of the above gives −st(x ·y) ≤ 1. The result
follows. (Choosing t = |y|−1 as well, we could extend the result to |x · y| ≤ |x| · |y|).
The case where x or y is (0, . . . , 0) is immediate.

Now observe that

|x+ y|2 = (x+ y) · (x+ y) ≤ |x|2 + 2x · y+ |y|2 ≤ |x|2 + 2|x||y|+ |y|2 = (|x|+ |y|)2.

So |x+ y| ≤ |x|+ |y|. Now replace x with x− y and y with y − z.

So Rn equipped with the Euclidean distance is a metric space. In fact, any
subset of Rn is a metric space. More generally, we have the following.

Proposition 2. If X is a metric space, and Y ⊆ X. Then the restriction of the
metric to Y is a metric on Y .

The finite Cartesian product of metric spaces can be made into a metric space.
A simple way to define a metric on the product is as follows.

Definition 4 (Product Metric). Let X1, . . . , Xn be metric spaces. Let dprod be
the metric on the Cartesian product X1 × · · · ×Xn defined by the formula

dprod(x, y) = max di(xi, yi)

where di : Xi ×Xi → R is the metric on Xi, where xi is the ith coordinate of x,
and where yi is the ith coordinate of y. We call this the product metric.

Remark. If we impose a boundedness condition, we can define a product metric
for infinite products. However, we have to take some care with the definition if we
want it to be compatible with the product topology. We will not pursue metrics
for infinite products in this document, but see Munkres (Munkres 1975, Chapter 2)
for more information.

Proposition 3. The product metric is a metric on X1 × · · · ×Xn.

Corollary 4. The function d′(x, y) = max |xi − yi| on Rn is a metric on Rn.
(Here x, y ∈ Rn and x = (x1, . . . , xn) and y = (y1, . . . , yn).)

The above corollary give us a second way of forming a metric space out of Rn.
We will see later that both metric spaces have the same topology due to the following
result:
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Proposition 5. Let d be the Euclidean metric on Rn, and let d′ be the product
metric on Rn. Then for all x, y ∈ Rn,

d′(x, y) ≤ d(x, y) ≤
√
n · d′(x, y).

Corollary 6. For each r > 0 and x ∈ Rn, let Br(x) denote the open ball according
to the Euclidean metric, and B′r(x) the open the open ball according to the product
metric. Then, for any r > 0 and x ∈ Rn,

Br(x) ⊆ B′r(x) ⊆ Br√n(x).

Open and closed balls for products are well-behaved:

Proposition 7. Let X1, . . . , Xn be metric spaces, and let X1 × · · · × Xn be the
metric space equipped with the product metric. If x ∈ X1 × · · · ×Xn then

Br(x) = Br(x1)× · · · ×Br(xn) and B≤r(x) = B≤r(x1)× · · · ×B≤r(xn).

Definition 5. (The Derived Bounded Metric) If d : X ×X → R is a metric on X,
then define d1 : X ×X → R by the formula d1(x, y) = min(1, d(x, y)). Then d1 is
called the derived bounded metric formed from d.

Lemma 8. If d : X ×X → R is a metric on X then the derived bounded metric is
also a metric on X.

Proof. We concentrate on the triangle inequality since the other properties are
clear. Suppose otherwise that d1(x, z) > d1(x, y) + d1(y, z). Since d1(x, z) ≤ 1 we
would then have both d1(x, y) < 1 and d1(y, z) < 1. So the following holds:

d(x, z) ≤ d(x, y) + d(y, z) = d1(x, y) + d1(y, z) < d1(x, y) ≤ 1.

Thus d(x, y), d(y, z), and d(x, z) are all strictly less than 1. So the supposition can
be written as d(x, z) > d(x, y) + d(y, z), a contradiction.

Example 2. Suppose X is the disjoint union of metric spaces. Replace each metric
with the derived bounded metric. Then if we define the distance of two points in
distinct spaces of the disjoint union to be 1, then the result is a metric space.

Proposition 9. Let y ∈ Br(x) in a metric space. There is an open ball Br′(y)
with center y such that Br′(y) ⊆ Br(x).

Proof. Let r′ = r − d(x, y).

Corollary 10. Let y ∈ Br1(x1) ∩ Br2(x2) in a metric space. There is an open
ball Br′(y) with center y such that Br′(y) ⊆ Br1(x1) ∩Br2(x2).

Proposition 11. Let x, y ∈ X and r ≥ 0. Suppose y /∈ B≤r(x). Then there is an
open ball Br′(y) disjoint from B≤r(x). In particular, Br(x) and Br′(y) are disjoint.

Proof. Let r′ = d(x, y)− r.
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As we have observed Rn can be made into a metric space using the Euclidean
distance or the product metric based on the usual metric on R. There is a third
common way of defining a metric on Rn called the taxicab metric since it can be
seen to be inspired by the driving distance between two points in a city that is
nicely laid out with a rectangular grid of streets.

Definition 6. The taxicab metric on Rn is the defined by the formula

d(a, b) =

n∑
i=1

|ai − bi|

where a = (a1, . . . , an) and b = (b1, . . . , nn).
More generally if X1, . . . , Xn are metric spaces with metrics d1, . . . , dn, then the

taxicab metric on X1 × · · · ×Xn is defined by the formula

d(a, b) =

n∑
i=1

di(ai, bi)

where a = (a1, . . . , an) and b = (b1, . . . , bn) are points of X1 × · · · ×Xn.

Proposition 12. Suppose X1, . . . , Xn are metric spaces with metrics d1, . . . , dn.
Then the taxicab metric is a metric on X1 × · · · ×Xn.

Proposition 13. Suppose X1, . . . , Xn are metric spaces with metrics d1, . . . , dn.
Let dΣ be the taxicab metric on X = X1×· · ·×Xn, and let dΠ be the product metric
on X. Then, for all a, b ∈ X,

dΠ(a, b) ≤ dΣ(a, b) ≤ n · dΠ(a, b).

Corollary 14. Let X = X1 × · · · × Xn where X1, . . . , Xn are metric spaces with
metrics d1, . . . , dn. For each x ∈ X and positive r ∈ R, let BΣ

r (x) denote the open
ball according to the taxicab metric, and BΠ

r (x) an open the open ball according to
the product metric. Then, for each x ∈ X and positive r ∈ R,

BΣ
r (x) ⊆ BΠ

r (x) ⊆ BΣ
n r(x).

So far we have not used the full completeness property of of R, but only the
fact that R is an ordered field where every nonnegative element has a square root.
However, the completeness of R is needed to define concepts of diameter and set
distance.

Definition 7 (Bounded, Diameter). Let X be a metric space with metric d. A
nonempty subset Y ⊆ X is said to be bounded if there is a B such that d(x, y) ≤ B
for all x, y ∈ Y . The supremum of the set of such bounds is called the diameter
of Y .

Definition 8 (Distance to Set). Let X be a metric space with metric d. Let S be
a nonempty subset of X, and let x ∈ X. Then the infimum of d(x, s) with s ∈ S is
called the distance of x to S. We can write this as d(x, S).
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Definition 9 (Distance between Sets). Let X be a metric space with metric d.
Let Y and Z be nonempty subsets of X. Then the infimum of d(y, z) with y ∈ Y
and z ∈ Z is called the distance between Y and Z. We can write this as d(Y,Z).

3 The Topology of a Metric Space

The previous section developed metric spaces without reference to the general con-
cepts of topology developed in earlier documents. In this section we begin to explore
the topology associated with a metric space X.

Definition 10 (Topology of a Metric Space). Let X be a metric space. We say
that a subset U ⊆ X is open if for all x ∈ U there is an open ball Br(x) such
that Br(x) ⊆ U .

Such open sets satisfy the requirements for open sets in general topology:

Lemma 15. The empty set ∅ and the whole space X are open. The (arbitrary)
union of open sets is open. The intersection of two open sets is open.

Lemma 16. Every open ball is an open set.

Proof. See Proposition 9.

Proposition 17. A metric space equipped with open sets (as defined above) is a
topological space. The collection of open balls is a basis for this topological space.

Remark. Given a metric space, the topology described above is sometimes called
the topology generated by the metric.

Proposition 11 gives us the following two propositions.

Proposition 18. Every metric space is a Hausdorff space.

Proposition 19. Every closed ball in a metric space is a closed subset in the
topological sense.

Definition 11 (Metrizable). A topological space X is metrizable if there is a metric
on X which generate the given topology on X.

Not every topological space is metrizable. In fact, metrizable spaces have some
distinctive properties:

Proposition 20. If a space is X metrizable then X is Hausdorff and every
point x ∈ X has a countable local basis.

It is important to note that distinct metrics can generate the same topology.
The following describes when this occurs:

Lemma 21. Let d : X×X → R and d′ : X×X → R be metrics on X. Then d and d′

generate the same topology if and only if both the following occur: (i) for every open
ball Bd,r(x) using metric d there is an r′ > 0 such that Bd′,r′(x) ⊆ Bd,r(x), (ii) for
every ball Bd′,r′(x) using metric d′ there is an r > 0 such that Bd,r(x) ⊆ Bd′,r′(x).
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This lemma together with Corollary 6 and Corollary 14 yields the following two
results:

Proposition 22. Suppose X1, . . . , Xn are metric spaces. Then the product metric
and the taxicab metric generate the same topology on the product X1 × · · · ×Xn.

Proposition 23. For each n > 0, the Euclidean metric, the taxicab metric, and
the product metric on Rn generate the same topology.

Proposition 24. A metric on a set X and the derived bounded metric generate
the same topology on X.

Proof. Start with the fact that for radius r < 1, the two metrics give the same open
balls.

Subset topologies and finite Cartesian product topologies are well behaved with
respect to metrics:

Proposition 25. Let X be a metric space and let Y be a subset of X. Then the
topology on Y generated by the restricted metric is the subspace topology on Y .

Proof. The collections of sets of the form Br(x)∩ Y with x ∈ Y is a basis for both
topologies of Y .

Proposition 26. Let X1, . . . , Xn be metric spaces. Then the topology on the metric
space X1 × · · · ×Xn which uses the product metric is the product topology.

Proof. See Proposition 7. Argue that respective bases for the two topologies gen-
erate the same topology on X1 × · · · ×Xn.

Proposition 27. The order topology and the metric topology on R coincide.

Proof. Compare bases. (See Example 1 for a description of balls.)

Recall that in Definition 8 we defined the distance d(x, S) from a point x to a
subset S. We can use this concept to give a appealing characterization of closure:

Proposition 28. Let X be a metric space with distance function d. Let S be a
nonempty subset of X. Then the closure of S is the set of points of distance zero
from S:

S = {x ∈ X | d(x, S) = 0}.

Proof. If x is in the closure of S, then for any ε > 0, the ball Bε(x) has a point s
of S. Thus d(x, S) ≤ d(x, s) < ε.

Conversely, if x has zero distance from S, then for any r > 0 the ball Br(x)
must contain a point of S since otherwise d(x, S) ≥ r.

4 Continuous Function on Metric Spaces

The traditional δ-ε definition of continuity is valid for metric spaces:2

2We defined continuity at a point in the first document of the series.
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Proposition 29. Let f : X → Y be a map between two metric spaces. Then f is
continuous at x0 ∈ X if and only if the following occurs: for every ε > 0 there is
a δ > 0 such that

f [Bδ(x0)] ⊆ Bε (fx0) .

In particular, f is continuous if and only if the above holds for each x0 ∈ X.

Remark. Observe that the condition of the above proposition is equivalent to the
more traditional criterion for continuity of f at a point x0 ∈ X: for every ε > 0
there is a δ > 0 such that for all x ∈ X with d(x, x0) < δ we have d(fx, fx0) < ε.

So functions Rm → Rn continuous under the common δ-ε definition are contin-
uous in the topological sense, and vice versa. For general metric spaces there is a
fundamental class of continuous functions called nonexpansive maps.

Definition 12. A map f : X → Y between two metric spaces is said to be nonex-
pansive if

dY (fa, fb) ≤ dX(a, b).

for all a, b ∈ X.

We have the following (using δ equal to ε):

Proposition 30. Every nonexpansive map is continuous.

Remark. Obviously constant functions and identity functions for metric spaces are
nonexpansive. The composition of nonexpansive maps is nonexpansive.

Since metrics are symmetric, we get the following:

Lemma 31. Let X be a metric space with metric d. A function f : X → R is
nonexpansive if and only if

fa− fb ≤ d(a, b)

for all a, b ∈ X.

Proposition 32. Let X be a metric space with metric d. If x0 ∈ X then the
function X → R defined by y 7→ d(x0, y) is nonexpansive, so is continuous.

Proof. This follows from the triangle inequality and the above lemma.

Proposition 33. Let X be a metric space with metric d. Consider X × X as a
metric space with the taxicab metric. Then the X-metric

d : X ×X → R

is a nonexpansive map X×X → R for the taxicab metric. Hence the metric on X
is a continuous map X ×X → R (where X ×X has the product topology).

Proof. Let dX be the given metric on X and let d′ be the taxicab metric on X×X.
We use Lemma 31 applied to f = dX . So fix a = (a1, a2) and b = (b1, b2) in X×X.
Then by the triangle inequality (applied twice),

dX(a1, a2)− dX(b1, b2) ≤ dX(a1, b1) + dX(b1, b2) + dX(b2, a2)− dX(b1, b2)
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The right hand side simplifies to

dX(a1, b1) + dX(b2, a2) = d′((a1, a2), (b1, b2)).

Thus
f(a)− f(b) ≤ d′(a, b)

as needed in order to use Lemma 31.

Lemma 34. Let X be a metric space. Suppose F is a nonempty collection of
nonexpansive functions X → R. For each x ∈ X let Fx be the set {fx | f ∈ F}.

Suppose Fx is bounded from above for each x ∈ X. Then the function map-
ping x ∈ X to the supremum of Fx is nonexpansive. Suppose Fx is bounded from
below for each x ∈ X. Then the function mapping x ∈ X to the infimum of Fx is
nonexpansive.

Proof. Suppose Fx is bounded from above for each x ∈ X, and let h : X → R be
the function mapping x ∈ X to the supremum of Fx. Let a, b ∈ X. Our goal is to
show ha− hb ≤ d(a, b) (see Lemma 31).

Let δ > 0. Then ha− δ < fa for some f ∈ F , and of course fb ≤ hb. So

ha− hb < fa− hb+ δ ≤ fa− fb+ δ ≤ d(a, b) + δ.

Since ha− hb < d(a, b) + δ for all δ > 0, we get ha− hb ≤ d(a, b).
The argument for the infimum is similar.

The following is a corollary (or can be proved directly since the proof is a bit
simpler in this case).

Corollary 35. Let X be a metric space. If f and g are nonexpansive func-
tions X → R then so are x 7→ max{fx, gx} and x 7→ min{fx, gx}.

Now we give examples of how the infimum and supremum of nonexpansive maps
can be used to establish continuity of some key functions. Recall that in Definition 8
we defined the distance d(x, S) from a point x to a subset S.

Proposition 36. Let X be a metric space with distance function d. Let S be a
nonempty subset of X. Then the distance function

x 7→ d(x, S)

is nonexpansive, so is continuous.

Proof. Let F be the collection of functions x 7→ d(x, s) with s ∈ S. By Propo-
sition 32, F is a collection of nonexpansive functions X → R. For each x ∈ X
let Fx be the set of values {fx | f ∈ F} = {d(x, s) | s ∈ S}. By Definition 8, the
distance d(x, S) is the infinimum of Fx. In particular, the function

x 7→ d(x, S) = inf Fx

is nonexpansive by Lemma 34.
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Sometimes it will be useful to have a bounded version of the distance function
to a set, for example in defining the bounded interior radius below. In the following
we select 1 as our default upper bound:

Proposition 37. Let X be a metric space with distance function d. Let S be a
nonempty subset of X. If S is nonempty, let d1

S(x) be equal to the minimum of 1
and d(x, S). If S is empty, let d1

S(x) = 1. Then d1
S is a nonexpansive function

on X, so is continuous.

Proof. See Corollary 35.

Definition 13. Let U be an open set of a metric space X. If x ∈ U then
let RadU (x) be the set of r ∈ (0,∞) such that Br(x) ⊆ U .

We also have a bounded version: let Rad1
U (x) be RadU (x) ∩ (0, 1].

For x ∈ U , we define the bounded interior radius ρ1
U (x) to be the supremum of

the set Rad1
U (x). We define ρ1

U (x) = 0 if x 6∈ U .

Proposition 38. Let U be an open set of a metric space X, and let Z be the
complement of U in X. Then for all x ∈ X

ρ1
U (x) = d1

Z(x)

where d1
Z is as in Proposition 37. In particular, the bounded interior radius func-

tion ρ1
U is nonexpansive, and hence continuous.

Here is a version of bounded interior radius for covers:

Definition 14. Let U be a collection of open subsets of a metric space and let
W be the union of the open sets, so U is a cover of W . Given a point x ∈ W
we define ρ̃1

U (x), the bounded interior radius at x, to be the least upper bound of
the set of all r ∈ (0, 1] such that the ball Br(x) is as subset of an open set of the
cover U . In other words, ρ̃1

U (x) is the supremum of the set

{r ∈ (0, 1] | ∃ U∈ U (Br(x) ⊆ U)} .

If x 6∈W we set the bounded interior radius ρ̃1
U (x) to be 0.

Lemma 39. Let U be a nonzero collection of open subsets of a metric space and
let W be the union of the open sets, so U is a cover of W . Then, for all x ∈ X,
the bounded U interior radius ρ̃1

U (x) is the supremum of the set {ρ1
U (x) | U ∈ U}.

From this and Lemma 34 we get the following (the special case where U is empty
is separate, but immediate):

Proposition 40. Let X be a metric space with distance function d. Let U be a
nonzero collection of open subsets of X. Then the bounded interior radius func-
tion ρ̃1

U is nonexpansive, so is continuous.

Definition 15. Let X and Y be metric spaces. An isometry is a map f : X → Y
such that dY

(
fx, fy

)
= dX(x, y) for all x, y ∈ X.
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Proposition 41. Let f : X → Y by an isometry. Then f is a continuous in-
jective function. If Y ′ is the image of f endowed with restricted metric, then the
corresponding function X → Y ′ is a homeomorphic isometry.

Proof. The map f is continuous since it is nonexpansive. Injectivity follows from
the definition of metric.

The restricted function X → Y ′ is also an isometry, so is continuous and injec-
tive. Since this function is a bijection it has an inverse g. Observe that g is also an
isometry, so is nonexpansive and continuous.

5 Metric Spaces and Sequences

Since every metric space is Hausdorff, we get the following (applying results from
Part 3 of the series):

Proposition 42. Suppose X is a metric space. Then a convergent sequence has a
unique limit. Furthermore, such a sequence has a unique accumulation point, and
this accumulation point is the limit.

Since every every point of a metric space has a countable local basis, we get the
following two results (as in Part 3 of the series):

Proposition 43. Let S ⊆ X where X is a metric space. Then x is in the closure
of S if and only if there is a sequence (xi)i∈N in S with limit x.

Proposition 44. Let X be a metric space and let Y be a topological space. Suppose
that f : X → Y is a function. Then f is continuous at x ∈ X if and only if f is
continuous for sequences at x. So f is continuous if and only if it is continuous for
sequences.

Definition 16. Let (xi)i∈I be a sequence in a metric space X. We say that (xi)
is Cauchy if for every ε > 0 there is an N such that if i, j ≥ N then d(xi, xj) < ε.

Proposition 45. Every convergent series in a metric space is Cauchy.

Definition 17. A metric space X is said to be complete if every Cauchy sequence
converges.

We take the following theorem as given:

Theorem 46. The metric space R is complete.

Remark. We assume the reader is familiar with the basic properties of R which
certainly includes the above theorem. We remind the reader that this can be
derived from the LUB and GLB properties of R as follows. Suppose (xi) is a
Cauchy sequence. Then {xi} must have an upper and lower bound. For each k,
let Bk be the supremum of {xi | i ≥ k}. Observe that Bk is a decreasing sequence
with a lower bound. Let B be the infimum of {Bk}. Then without too much
trouble, one can show that B is the limit of (xi).

11


