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You can think of general topology as a framework that considers generalizations
of the familiar spaces encountered in mathematics such as the classical subspaces of
Euclidean space Rn. This general study unifies the study of many disparate spaces,
and encourages mathematicians to seek out new examples of topological spaces
within various fields of study in order to apply the insights of general topology to
their investigations. In this process of generalization it took some time to settle on
the now common standard definition of a topological space (as given in the first
document of the series). There are more general notions, more specific notions that
still cover most classical examples, and of course various equivalent formulations.
One early framework for topology developed by Felix Hausdorff, an important pi-
oneer in set theory and general topology, assumes the following property: given
any two distinct points x, y there are disjoint open subsets U, V such that x ∈ U
and y ∈ U . This is called a “separation axiom” since it describes the separation of
points with open sets. Note especially that this axiom holds for subspaces of Rn,
and it holds for the more general spaces that Hausdorff was interested in. This
property is not required in the current conception of a topological space (formally
defined in the previous document of this series), but such spaces are ubiquitous and
worth study as an important type of topological space. Today we call such spaces
“Hausdorff spaces”.

The theory of Hausdorff spaces is a bit simpler than the theory of general spaces,
and Hausdorff spaces possess some nice properties that generalize familiar proper-
ties of classical spaces (as we will see later in this document) that cannot be proved
for more general spaces. There are, however, several spaces of interest to mathe-
maticians that are not Hausdorff spaces. So it is generally accepted that one should
admit more general spaces than Hausdorff spaces. However, any result that depends
on the Hausdorff axiom, in other words, any result about Hausdorff spaces, is cen-
trally important since most spaces of interest are in fact Hausdorff spaces. The goal
of this document is to present some of the basic properties of Hausdorff spaces.

In a later document we will consider metric spaces in detail. For now, it is
enough to know that such spaces include most spaces familiar to mathematicians,
and all such spaces are Hausdorff spaces. In the optional sections of this document
we will consider other separation axioms that hold of metric spaces. There is a well-
known hierarchy of such axioms ordered from weaker to stronger: T0, T1, T2, T3, T4,
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with others sometimes added. The axiom T2 is the Hausdorff axiom metioned above.
Informally, the stronger the separation axiom the more the space behaves like a
metric space. So it is useful sometimes to see what separation axioms are required,
if any, to generalize a familiar result from metric spaces to more general topological
spaces. These separation axioms are used sometimes to describe conditions that
guarantee when a topological space can in fact be given a metric space structure.1

The general study of separation axioms is less central to the core study of topology
than the study of Hausdorff spaces (with axiom T2), so it is reasonable for the reader
to pass over these for now, and return to them only if needed and only after the
core concepts (metric spaces, compactness, connectedness, et cetera) are mastered.
So these sections are labeled “optional”.

The Series: Survey of General Topology

This document is the second of a series which surveys the basics of general topol-
ogy. This document builds on the first document of the series which covers several
of the fundamental topological concepts: topological spaces, open subsets, closed
subsets, bases, open neighborhoods, limit points, interiors of subsets, boundaries
of subsets, continuous functions, homeomorphisms, products of two spaces, and so
on. Other topics such as metric spaces, connectedness, and compactness will be
covered in later documents in the series. The documents in this series are focused
on the logical structure of the subject, and on the most central results (less central
results are sometimes considered in optional sections). Minor details of proof are
left to the reader: I believe that working through these details is an excellent ex-
ercise which can be pleasant and not too arduous, and gives the reader an overall
better experience than reading someone else’s write-up of such details. Aside from
leaving out such minor details, this series is intended to describe a full and rigorous
developments of the essentials of general topology.2

1 Prerequisites

General topology is largely a self-contained subject, and this series of notes aims
to be self-contained and rigorous with three caveats.

1. Each document in the series builds on results in the previous documents.
In particular, this document assume the reader is familiar with the basic
properties of open and closed sets in a general topological space, as well as
open neighborhoods.

1For example, a compact space with a countable basis is metrizable if and only if it satisfies
the T2 axiom. A topological group is metrizable if and only if it is T0 and the identity element
has a countable basis of neighborhoods. A topological space with a countable basis is metrizable
if and only if it statisfies this T3 axiom (the Urysohn metrization theorem, see [5, Theorem 34.1]),
and so on.

2This series is not intended to replace the many excellent textbooks that exists. Such textbooks
provide more examples, motivation, exercises, and references; they also cover some less essential
topics that are not included in my series. This series is more of a survey, also serving as a good
review or reference for readers with some prior exposure to topology. The hope is that it will
provide an efficient but fairly complete view of the essentials.
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2. I do assume proficiency with logic, the conventions of mathematical proof,
and basic set theory. I also assume some knowledge of the real numbers and
the other basic number systems of mathematics, and in some examples I may
assume other common results from mathematics, for example properties of
polynomial and trigonometric functions.

3. I assume that the reader will want to fill in the routine details, so I do not
need to give proofs if they are straightforward. I do try to provide at least
enough details of proofs so that filling in the rest of the details is reasonable
straightforward.

2 The Notion of a Hausdorff Space

Definition 1. A topological space X is called a Hausdorff space if for each x, y ∈ X
with x ̸= y there are disjoint open subsets U, V such that x ∈ U and y ∈ V .

Being Hausdorff is a topological property:

Proposition 1. Every space homeomorphic to a Hausdorff space is also a Haus-
dorff space.

Proposition 2. Every one-point subset of a Hausdorff space is closed. Thus every
finite subset of a Hausdorff space is closed.

Recall that we defined a limit point of a subset S of a topological space to be
a point x such that every open neighborhood of x has at least one point of S not
equal to x. In Hausdorff spaces a limit point x of S has the stronger property that
each neighborhood of x contains an infinite number of points in S:

Proposition 3. Let S be a subset of a Hausdorff space X. A point x ∈ X is a
limit point of S if and only if every open neighborhood of x has an infinite number
of points of S.

Remark. Earlier we used the term accumulation point of S for a point x with the
property that every open neighborhood of x contains an infinite number of points
of S. The above proposition shows that there is no need to introduce this distinction
in Hausdorff spaces: limit points are accumulation points and vice versa.

Proposition 4. Let X be totally ordered set considered as a topological space using
the order topology. Then X is a Hausdorff space. In particular, R with its order
topology is a Hausdorff space.

Proof. Consider distinct points x, y with x < y. Consider separately the case where
there is or is not a point z between x and y.

Basic properties of the subspace topology gives the following:

Proposition 5. A subspace of a Hausdorff space is Hausdorff.

The only Hausdorff space structure you can put on a finite set is the discrete
topology:
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Proposition 6. A finite Hausdorff space is discrete in the sense that every subset
is open and closed.

To check if a space is Hausdorff we only need to use basic open sets:3

Proposition 7. Let X be a topological space with a chosen basis B. Then X is
Hausdorff if and only if the following occurs: for all x, y ∈ X there are disjoint
basic open sets U and V such that x ∈ U and y ∈ V .

The class of Hausdorff spaces is closed under products. For now we stick to
binary products since this was the only type of product considered the previous
document of the series:4

Proposition 8. The product of two Hausdorff spaces is Hausdorff.

Remark. From the above propositions we see that Rn, considered as Rn−1 × R
when n ≥ 1, is a Hausdorff space, as is any subspace of Rn. This already covers a
huge swath of examples. Later we will see that any metric space is a Hausdorff space
as well. Since the specific topological spaces considered by most mathematicians
are Hausdorff, non-Hausdorff spaces are considered somewhat artificial to many.
However, the Zariski topology of algebraic geometry is a natural example of a non-
Hausdorff topology. We won’t consider the definition of the Zariski topology in
this document, but the following example gives an accessible, somewhat natural,
example.

Example 1. Here is a simple example of a non-Hausdorff space: let X be an infinite
set with the finite complement topology (where a nonempty subset of X is open if
and only if it has a finite complement). Then X is not Hausdorff. Note, however,
that every one-point subset of X is closed, so X is an example of a T1 space (in the
terminology of Section 4 below).

The proof of the following is a pleasant exercise:

Proposition 9. A topological space X is Hausdorff if and only if the diagonal

∆ = {(x, x) | x ∈ X}

is closed in X ×X.

3 Continuous Functions into Hausdorff Spaces

When we consider codomains that are Hausdorff spaces we find that continuous
functions have several properties we expect from our experience with real-valued
functions. We start with the set on which two continuous functions agree.

3Recall that if we fix a basis B then we adopted the term “basic open sets” for the members
of B.

4This generalizes to infinite products. We will postpone this until the future document where
we consider arbitrary products of topological spaces. So far we have only worked with products
of two spaces.
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Proposition 10. Let f and g be two continuous functions X → Y where Y is a
Hausdorff space and X is any sort of topological space. Then

{x ∈ X | f(x) = g(x)}

is closed in X.

Proof. It is enough to prove the following: if x0 ∈ X is such that f(x0) ̸= g(x0)
then there is an open neighborhood U of x0 such that f(x) ̸= g(x) for all x ∈ U .

So assume x0 ∈ X and f(x0) ̸= g(x0). Since Y is Hausdorff we have disjoint
open subsets V1 and V2 of Y such that f(x0) ∈ V1 and g(x0) ∈ V2. Finally we
confirm that the following U has the desired property:

U = f−1[V1] ∩ g−1[V2].

Example 2. As a corollary to the above we have the closure of the zero set:
if f : X → Rn is a continuous function from a topological space X then the zero set

Z(f) = {x ∈ X | f(x) = 0}

is closed in X.

Proposition 11. Let f be a continuous function X → Y where X and Y are
topological spaces and where Y is Hausdorff. Then the graph of f

Γf = {(x, y) ∈ X × Y | y = f(x)}

is closed in X × Y .

Proof. Consider the pair of functions g, h : X × Y → Y where g(x, y) = y and
where h(x, y) = f(x). Our established results for functions on Cartesian products
guarantee that these functions are continuous, even without the Hausdorff assump-
tion for Y . Observe that the graph Γf is just the set where g(x, y) = h(x, y).

You might expect that a continuous function is determined by its values on any
dense subset of the domain. If the codomain Y is Hausdorff this is in fact true.

Definition 2. A subset A of a topological space X is said to be dense if A = X.

Lemma 12. A subset A of a topological space X is dense if and only if every
nonempty open subset of X contains points of A.

The following expresses what we mean when we say that “a continuous function
is determined by its values on a dense subset”:

Proposition 13. Let X be a topological space and let Y be a Hausdorff space.
Suppose A is a dense subset of X. In other words, suppose A = X. Given a
function f : A → Y , there is at most one continuous function X → Y extending f .

Proof. Suppose g1 and g2 are continuous functions X → Y extending f , and con-
sider the set Z = {x ∈ X | g1(x) = g2(x)}. Since Y is Hausdorff, Z is closed, and
of course Z contains A. Thus Z = X, and so g1 = g2.
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Corollary 14. Let X be a topological space and let Y be a Hausdorff space. Let A
be a subset of X. Given a function f : A → Y , there is at most one continuous
function A → Y extending f .

Proof. We apply the previous result to the subspace X ′ where X ′ is the closure
of A in X. Observe that the closure of A in X ′ is all of X ′, so A is dense in X ′.

4 T1-Spaces (optional)

In what generality should one study topological spaces?5 In other words, what
is the optimal definition of a topological space? We want a notion of space that
captures most if not all the spaces that we wish to consider in our mathematical
work, while at the same time we want a notion specific enough to allow us to define
the common concepts and prove some standard theorems. We want a framework
that is general enough to allow us to see clearly the connections between various
assumptions and their consequences.

In this series we have made a very standard choice for our definition of topolog-
ical space. This was laid out in the first document of the series where we defined
a topological space using a few standard axioms about the collection of subsets
designated as open subsets. Since most spaces that mathematicians care about are
Hausdorff, one might add the Hausdorff axiom and only study Hausdorff spaces.
This has some benefits; for example, not needing to make a distinction between limit
points and accumulation points, or being able to show that continuity and density
interact as one expects from experience with real-valued function. However, there
is some interest in non-Hausdorff spaces, so perhaps we should work with general
spaces and only assume our spaces are Hausdorff when needed for a certain result.
This has the theoretic advantage of making it plain when the Hausdorff axiom is
required.

In his classic work [6], Pontrjagin took a middle path between starting with
general topological spaces in the modern sense, and starting only with Hausdorff
spaces from the start. He assumed as a basic principle that the closure of any point
set {x} is itself, but did not assume, at first, that his spaces are Hausdorff. Of course
this is a reasonable assumption since most spaces of interest to mathematicians have
this property, so to the extent it simplifies or clarifies the theory it is a reasonable
assumption. This axiom is called the T1 axiom, but it is usually not stated in
terms of the closure of one-point subsets but rather in an equivalent form that
more parallels the Hausdorff axiom discussed above:

Definition 3 (T1 axiom, T1 spaces). A T1 space is a topological space X such
that the following T1 axiom holds: given distinct points x, y ∈ X, there is an open
neighborhood of x not containing the point y.

5This section will not be further used in our core series on topological spaces, and so I have
labeled it as optional. A reader who wishes to quickly get to the more central topological con-
cepts such as metric spaces, compactness, and connectedness can safely skip this section and the
following sections. In my opinion, the separation axioms such as the T0 and T1 axioms are best
left for serious study after the more essential core concepts have been learned: some readers will
need them in their further mathematical work, others will not.
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From this formulation it is clear that the Hausdorff axiom (sometimes called
the T2 axiom) is stronger than the T1 axiom:

Proposition 15. Every Hausdorff space is a T1 space.

As mentioned above, this can be reformulated in terms of one-point subsets:

Definition 4. Let X be a topological space. A closed point x ∈ X is a point such
that {x} is closed.

Proposition 16. Let X be a topological space. Then X is a T1 space if and only
if every point of X is a closed point.

Remark. The Zariski topology of algebraic geometry yields topological spaces with
nonclosed points. However, in most other applications of topology we only care
about spaces where every point is a closed point. So assuming a space is T1 when
necessary is considered a mild restriction, and a theorem about T1 spaces is con-
sidered a very general result.

Corollary 17. Every finite subset of a T1 space is closed.

Corollary 18. A finite T1 space is discrete.

Either formulation of the T1 property yields the result that being a T1 space is
a topological property:

Proposition 19. Every space homeomorphic to a T1 space is also a T1 space.

Corollaries 17 and 18 are analogous to results about Hausdorff spaces. There
are several other properties that T1 spaces have in common with Hausdorff spaces:

Proposition 20. Every subspace of a T1 space is a T1 space.

Proposition 21. The product of two T1 spaces is a T1 space.6

Proposition 22. Let S be a subset of a T1 space X. A point x ∈ X is a limit point
of S if and only if every open neighborhood of x has an infinite number of points
of S. (In particular, there is no need to make a distinction between limit points and
accumulation points in T1 spaces.)

The following exercise gives another amusing characterization of T1 spaces:

Exercise 1. Let X be a topological space. Show that X is a T1 space if and only
if the subspace topology on any two-point subspace of X is discrete.

5 Generic points and T0-Spaces (optional)

The Zariski topology used extensively in algebraic geometry often uses nonclosed
points which are sometimes called “generic points”.7 When nonclosed points ex-
ist the space cannot be Hausdorff, nor even T1, so algebraic geometry supplies

6This generalizes to infinite products as we will see in a later document.
7This section is optional, and is designed only for readers who are interested in the possibility

of nonclosed points, such as those studying the Zariski topology of algebraic geometry. This
optional section builds on some ideas of the previous option section (Section 4).
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topologies which fail to satisfy even the T1 axiom. In this section we will motivate
T0 spaces as an interesting intermediate type between general topological spaces
and T1 spaces.

In the section we will write a ◁ b if a is a point in the closure of {b}. In the
Zariski topology we think of a ◁ b (at least where a and b are distinct) as expressing
the idea that b is a “generic” point that has as one of its specialization the point a.
It is convenient to use this terminology more generally:

Definition 5. Let X be a topological space. If a ∈ X is in the closure of {b} then
we say that a is a specialization of b and we write a ◁ b. A generic point of X is a
nonclosed point.

In our terminology established in the first document of this series, a is a spe-
cialization of b if and only if a is a contact point of {b}. So intuitively we can paint
the picture of a generic point b as a “fat” point, with certain small points a that
touch b (but where we think of b as being too big to be in contact with a in all of
its extent). Note also that a is a specialization of b if and only if {a} ⊆ {b}, so

a ◁ b
def⇐⇒ a ∈ {b} def⇐⇒ a is a contact point of {b} ⇐⇒ {a} ⊆ {b}.

From this we get the following:

Proposition 23. Let X be a topological space. Then the relation ◁ of specialization
defined above is reflexive and transitive.

Of course, if X is a T1 space then the relation ◁ reduces to the equality relation.
The converse is true as well:

Proposition 24. The relation ◁ on a topological space X is equality if and only
if every point of X is a closed point, which occurs if and only if X is a T1 space.

Proposition 23 asserts that ◁ satisfies satisfies all the properties of a partial
order except possibly the antisymmetric property (we have not shown that a ◁ b
and b ◁ a together implies a = b). In the Zariski topology the relation ◁ turns out
to be antisymmetric and so is a true partial order on the space. We will skip the
details on the Zariski topology here (mentioning it only for the benefit of readers
interested in algebraic geometry), but we can address the following question: What
type of spaces have the property that the relation ◁ a partial order? In other words,
when is ◁ antisymmetric?

Proposition 25. Let X be a topological space with the relation ◁ defined above.
The following are equivalent:

1. The relation ◁ is a partial order.

2. The relation ◁ is antisymmetric. In other words if a, b ∈ X are such that
both a ◁ b and b ◁ a then a = b.

3. For all a, b ∈ X distinct, there is an closed set containing one but not both
of a, b.
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4. For all a, b ∈ X distinct, there is an open set containing one but not both
of a, b.

5. For all a, b ∈ X distinct, the subset topology on {a, b} is nontrivial in the
sense that there exists a proper nonempty open subset.

Any of the above conditions defines what is known as the T0 axiom. It is
customary to focus on open sets in the formal definition of this axiom since it best
mirrors the T1 and Hausdorff (T2) axioms:

Definition 6 (T0 axiom, T0 spaces). A T0 space is a topological space X such that
the following T0 axiom holds: given distinct points a, b ∈ X, there is an open set
containing one but not both of a, b.

Proposition 26. Every T1 space is a T0 space. A topological space is a T0 space if
and only if the relation ◁ defined above is a partial order, and is a T1 space if and
only if the relation ◁ is just equality.

The Zariski topology (not pursued here) provides good examples of T0 spaces
that are not T1 spaces. It turns out that T0 condition is useful in the theory of
topological groups since to show a topological group is Hausdorff (and even regular),
it is enough to check the T0 condition.8

6 Further Separation Axioms (optional)

The Hausdorff axiom of Definition 1 is often called the “T2 axiom”, and can be
thought of as an axiom describing the possibility of separating distinct points by
disjoint open sets.9 The axioms T0 and T1 are considered weaker forms of this sep-
aration property. In fact there are five common “separation axioms” T0, T1, T2, T3,
and T4 of increasing strength:

T4 =⇒ T3 =⇒ T2 =⇒ T1 =⇒ T0.

According to Munkres [5, page 211 of §33], the use of the letter T here comes
from “Trennungsaxiom” which is the German word for “separation axiom”. Some
authors go further and give separation axioms beyond T0 to T4.

10 We have de-
scribed T0, T1, T2 already; T3 and T4 are as follows:11

8Recall that Pontrjagin in his classic [6] on topological groups assumes T1 for all spaces, which
makes all topological group automatically Hausdorff, and even regular.

9This optional section builds on the other optional sections in this document.
10For example, [1, 425 Q] includes T5 spaces (completely normal) and T6 spaces (perfectly

normal). Steen and Seebach [8, Section 2] even introduces intermediate axioms T2 1
2
and T3 1

2
.

11In order to support the above chain of implications, we require that all one-point subsets
be closed (the T1 axiom) in our definitions of T3 and T4 spaces. But some authors drop the T1

requirement in some definitions. For example, [8, Section 2] agrees with our definition of regular
and normal spaces, but generalizes the notion of T3 and T4 spaces by dropping the T1 requirement.

There are also disagreements in what “regular” and “normal” mean. Munkres [5, §31] agrees
with our definition of regular and normal. Bourbaki [2, Chapter I, §8.4] also requires that regular
spaces be Hausdorff, but Montgomery and Zippin [4, page 9 of §1.7] do not. Also [7, Chapter 17],
which is largely devoted to separation axioms, agrees with our definitions of the Ti, but differs
in the definition of regular and normal spaces by not requiring the T1 axiom; this convention is
adopted by Kelley [3] and Willard [9] as well.

9



Definition 7. A topological space X is said to be a T3 space, or a regular space,
if (1) all one-point subsets are closed and (2) given a point x ∈ X and a closed
subset Z ⊆ X not containing x there are disjoint open subsets U and V such
that x ∈ U and Z ⊆ V . In other words, points and closed subsets can be separated
by disjoint open subsets.

A topological space X is said to be a T4 space, or a normal space, if (1) all
one-point subsets are closed and (2) given disjoint closed subsets Z1 and Z2 of X
there are disjoint open subsets U1 and U2 such that Z1 ⊆ U1 and Z2 ⊆ U2. In other
words, disjoint closed sets can be separated by disjoint open subsets.

Metrizable spaces satisfy all these separation axioms, so these axioms can be
thought of as conditions classifing nonmetrizable spaces. They are also used to
provide convenient sufficient conditions for interesting results. For example, they
naturally occur along with other assumptions in giving sufficient conditions for a
space to be metrizable. Another example can be found in the theory of topological
groups where it can be shown that a topological group that satisfies the T0 axiom
is Hausdorff, and even regular. These concerns are somewhat tangential to the
immediate goals of this survey, so we are content to focus for now on the most
important separation axiom: the Hausdorff axiom (T2). Regular and normal spaces
may be covered in more detail in a future document following the core documents.

Exercise 2 (Regularity equivalence). Show that the second property (2) in the
definition of regular space is equivalent to the following condition: given x ∈ X and
an open neighborhood U of x, there is an open subset V such that

x ∈ V ⊆ V ⊆ U.

Exercise 3 (Normality equivalence). Show that the second property (2) in the
definition of normal space is equivalent to the following condition: given a closed
subset Z and an open subset U with Z ⊆ U , there is an open subset V such that

Z ⊆ V ⊆ V ⊆ U.

Historical Note. The identification and investigation of separation axioms seems to
be largely a phenomenon of the 1920s, although the statement (but not the name)
of the T2 axiom dates earlier to Hausdorff (1914) who included this axiom as part
of his early and influential definition of a topological space.

According to [1, 425 Q], the axiom T0 is attributed to Kolmogorov and axiom T1

is attributed to Fréchet. As mentioned, axiom T2 is attributed to Hausdorff. Ax-
iom T3 is attributed to Vietoris (for a version given in a 1921 publication), and
axiom T4 is attributed to Tietze (for a version from a 1923 publication).

Willard [9] adds some details to this history. He attributes the T1 axiom to either
Fréchet or Riesz, and states that Tietze is responsible for the term Trennnungsaxiom
(separation axiom) in 1923. He states that Vietoris is responsible for the notion of a
regular space (1921). According to Kelley [3, Chapter 1, page 57] the Ti terminology
is due to Alexandroff and Hopf (1935).
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