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This is the seventh part in a series which reviews the basics of general topology.
This part is devoted to the concept of compactness and it is the last of the “core
concepts” series. There are follow-up documents planned for topics such as topolog-
ical groups, local compactness, manifolds, paracompactness, Tychonoff’s Theorem,
and so on, but they will not be part of a series and will be somewhat independent
of each other.

There are several types of readers that I had in mind when writing this review.
One type is a reader who learned topology in the past but who has forgotten the
details and could use this as a summary of the key definitions and results and a
description on how the theory is built up. (This type of reader might have even
include the author before setting out to write this series). The proofs of many of
the results are missing or are merely sketched, but enough details are given that
a reader comfortable with set-theoretic reasoning could supply the details. So a
reader who has at least a causal familiarity of topology could use this series to
systematically work through the subject, supplying the missing proofs along the
way. The reader should be warned that this review is light on counter-examples
and skips some less essential topics, so these notes are not a substitute for a more
complete textbook or reference text. However, I have tried to hit all the really
important elements. What about readers without a past background in topology?
Can this series be used as a first introduction to general topology? I believe it can
if used in conjunction with a knowledgeable instructor or knowledgeable friend, or
if supplemented with other less concise sources that discuss additional examples
and motivations. But it does help if the reader has some exposure to the topology
of Rn or, more generally, the topology of metric spaces.

For the reader who wants to systematically work through the material with
full proofs, I mention that is a rigorous account in the sense that it only relies on
results that can be fully proved by the reader without too much trouble given the
outlines provided here. The reader is expected to be versed in basic logical and
set-theoretic techniques employed in the upper-division curriculum of a standard
mathematics major. But other than that, the subject is self-contained.1 I have
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1Set theoretic reason here is taken to include not just ideas related to intersections, unions,
and the empty set, but also complements, functions between arbitrary sets, images and preimages
of functions, Cartesian products, relations such as order relations and equivalence relations, well-
ordering and so on.
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attempted to give full and clear statements of the definitions and results, with
motivations provided where possible, and give indications of any proof that is not
straightforward. However, my philosophy is that, at this level of mathematics,
straightforward proofs are best worked out by the reader. Working out proofs is a
great way to sharpens ones topological understanding and intuitions. Whenever a
proof is not given, this signals to the reader that they should work out the proof,
and that the proof is straightforward. Supplied proofs are sometimes just sketches,
but I have attempted to be detailed enough that the prepared reader can supply
the details without too much trouble. Even when a proof is provided, I encourage
the reader to attempt a proof first before looking at the provided proof. Often the
reader’s proof will make more sense because it reflects their own viewpoint, and
may even be more elegant. There are several examples included and most of these
require the reader to work out various details, so they provide additional exercise.

1 Logical dependencies and notation

In addition to requiring basic mathematical logic and set theory, this document
builds on the theory developed in the six earlier documents in this series. It uses
Part 6 (connectedness) only in a small way, for example briefly in Sections 5 and 8,
and in Proposition 36. So a reader could study the current document before or
alongside Part 6 without too much loss. Also, the Cartesian products considered
here are typically finite products, so a reader does not have to be fully comfortable
with infinite Cartesian products (Part 4 of this series). The last section does use
infinite Cartesian products, but this section is not critical to the main thread of
this document. (Tychonoff’s Theorem about the compactness of products will be
presented in a later document.)

The last section (specifically Subsection 13.1) uses a few standard results about
ordinals to construct certain examples and counterexamples, but this is not essential
to the main thread of this document.

Most terminology here is standard, but we will use terminology that, while
used, is less universal in topology. For example, if X is a topological space with a
designated basis B then we use the term basic open sets for elements of B. We will
make a distinction between “limit points” of a subset (where each neighborhood of a
point has a point in the given set distinct from the given point) and “accumulation
points” of a set (where each neighborhood of a point has an infinite number of
points in the given set); for Hausdorff spaces, or even T1-spaces, these two concepts
are in fact the same.

2 Introduction: classic theorems from analysis

There are several classic theorem from analysis that require closed and bounded
subsets of Rn. For example, they all apply to closed intervals of R, and are often
introduced to students initially for such closed intervals.

Classic Theorem (Extreme Value Theorem). Suppose that K is a closed and
bounded subset of Rn and that f : K → R is a continuous function. Then f has a
maximum and a minimum.
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Classic Theorem (Bolzano-Weierstrass). Any bounded sequence in Rn has a con-
vergent subsequence. In particular, if K is a closed and bounded subset of Rn then
any sequence in K has a subsequence which converges to a point of K.

The following theorem is useful for proving that continuous functions with nice
domains are (Riemann) integrable, and for other applications as well.

Classic Theorem (Uniform Continuity). Suppose that K is a closed and bounded
subset of Rn. Then every continuous function K → R is actually uniformly con-
tinuous.

This theorem on uniform continuity is based on another useful theorem:

Classic Theorem (Heine-Borel). Suppose that K is a closed and bounded subset
of Rn. Then every cover of K by open subsets of Rn has a finite subcover.

Finally nested sequences of closed and bounded sets have nonempty intersections
(the reader may enjoy working out counter-examples for nested sets that are either
not closed or not bounded).

Classic Theorem (Nested Intersection). Let K1 ⊇ K2 ⊇ K3 ⊇ · · · be a se-
quence of nonempty closed and bounded sets in Rn. Then the intersection ∩∞i=1Ki

is nonempty.

All of these theorem can be extended to more general topological spaces once
we identify a suitable generalization of “closed and bounded”. Informally we call a
set “compact” if it is “bounded” in the same manner as the sets described above:
bounded in a local sense (they are closed, and so have their boundary within the
set) and in a global sense (distance between points is bounded, there is no sequence
that goes “off to infinity”). It turns out that “closed and bounded”, while ade-
quate for Rn, is not sufficient for metric spaces in general, and the usual definition
of bounded does not even make sense for more general topological spaces. So we
would like to have a non-metric formulation of the idea. This challenge motivated
topological investigations of the early 20th century, allowing the above classic the-
orems (which became commonplace in the late 19th century), to be generalized
beyond Rn.

In what follows, we develop the general modern notion of compactness which
is based on the idea of an open cover (as in the Heine-Borel theorem). Along the
way we will encounter fairly simple proofs for the above classic results and their
generalizations.

3 Compactness in terms of covers

Historically, the first notion of compactness used in general topology was sequential
compactness, which is closely tied the Bolzano-Weierstrass theorem in analysis.
This was eventually replaced (around the 1920s) by a notion of compactness that
is more linked to the Heine-Borel theorem. This later notion turned out to have
better properties than sequential compactness; for example, the arbitrary Cartesian
product of compact spaces is compact. Either notion of compactness, though, is
suitable for generalizing the above theorems from analysis. Sequential compactness
will be covered later in this document.

3



Definition 1 (Compact). A topological space X is compact if every cover of X by
open sets possesses a finite subcover. A subset S of X is said to be compact if S is
compact under the subspace topology.

Recall the definition of cover:

Definition 2 (Cover). A cover of a topological space X is a collection C of subsets
of X such that

X =
⋃
U∈C

U.

A cover of a subset S of X is a collection C of subsets of X such that

S ⊆
⋃
U∈C

U.

We call such covers open covers if each subset in C is open in X. We define closed
covers and so on in a similar manner. A subcover of a cover C is a subset of C that
is itself a cover.

Proposition 1. A subset S of a topological space X is compact if and only if every
open cover of S has a finite subcover.

Example 1. Finite subsets of a space are compact. A discrete space X is not
compact if it is infinite. The real line is not compact. Open and half open intervals
in R are not compact. Euclidean space Rn is not compact.

Theorem 2. Suppose that f : X → Y is continuous. If K is a compact subset of X
then f [K] is a compact subset of Y .

Corollary 3. If X is a compact topological space then any space homeomorphic
to X is also compact.

Theorem 4. Every closed subset Z of a compact space X is a compact subset of X.

Proof. Incorporate the complement of Z to form a cover of the whole space X.

Proposition 5. The union A∪B of two compact subsets A and B of a topological
space X is compact.

Proposition 6. Let X be a topological space with a designated basis. Then a
subset S of X is compact if and only if each cover of S by basic open sets has a
finite subcover.

Proof. One direction is clear, so suppose any cover of S by basic opens sets has
a finite subcover. Let U be a cover of S by general open subsets. Let C be the
collection of all basic open sets B such that B ⊆ U for some U ∈ U , and apply the
supposition to C.

We get a nested intersection theorem for nested collections of nonempty compact
subsets:
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Theorem 7. Let X be a compact space, and let N be a nested collection of
nonempty closed subsets (i.e., a collection totally ordered under inclusion: given
two subsets of N one is a subset of the other). Then N has a non-empty intersec-
tion.

Proof. Assume an empty intersection, and view complements as a cover of X.

In the above we assumed that X was itself compact, but of course the theorem
is valid as long as one of the closed sets in N is compact. We can actually gen-
eralize this. In fact, we can reformulate compactness in terms of non-empty finite
intersections:

Proposition 8. A space X is compact if and only if the following holds: Let C be
a collection of closed subsets with the property that any finite subcollection of C has
a nonempty intersection; then C as a whole has a nonempty intersection.

4 Compactness in Hausdorff spaces

Theorem 4 can be strengthened for Hausdorff spaces. First we prove the following
key separation lemma.

Lemma 9. Let X be a Hausdorff space. If x ∈ X and if Y is a compact subset not
containing x, then there are disjoint open subsets U and V of X such that x ∈ U
and Y ⊆ V .

Proof. Use the Hausdorff property to form a suitable cover of Y by open subsets.

Theorem 10. If X is a Hausdorff space, then every compact subset is closed.

Proof. By Lemma 9 the complement is open.

Corollary 11. Suppose X is a compact Hausdorff space. Then a subset S of X is
compact if and only if S is closed in X.

Corollary 12. Suppose X is a Hausdorff space and C is a nonempty collection of
compact subsets of X. Then the intersection

⋂
K∈CK is compact.

Corollary 13. Suppose f : X → Y is a continuous map where X is compact and
where Y is Hausdorff. Then f is a closed map: the image under f of every closed
subset of X is a closed subset of Y .

Corollary 14. Suppose f : X → Y is a continuous bijection where X is compact,
and Y is Hausdorff. Then f is an open map. So f is a homeomorphism.

Example 2. Later we will show that the closed interval [0, 1] is compact in R. So
if f : [0, 1]→ Rn is a path that is injective then its image is homeomorphic to [0, 1].

Using Lemma 9 and the the idea behind its proof one gets the following sepa-
ration proposition:
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Proposition 15 (Separation of compact sets). Let X be a Hausdorff space. If Y
and if Z are disjoint compact subspaces, then there are disjoint open sets U and V
such that Y ⊆ U and Z ⊆ V .

Note that if a space X has such a separation property for compact subsets then
the space is Hausdorff X (since singleton sets are compact). Thus the property of
separating disjoint compact subsets characterizes Hausdorff spaces.

For Hausdorff spaces, you can think of compact subspaces as being “universally
closed”. In particular, no matter how a compact space K is embedded into a
Hausdorff space, its image will be closed in that space:

Proposition 16. Suppose K is a compact space. If X is a Hausdorff space with a
subspace K ′ homeomorphic to K, then K ′ is closed in X.

This proposition makes it easy to show that some spaces are not compact. For
example, any open or half-open interval in R is not compact since it is not even
closed in R. As another example, R is not compact since it is homeomorphic to the
interval (0, 1) which is not closed in R.

5 Compactness in ordered spaces

The most important property of compact sets in ordered spaces is that they have
maxima and minima:

Theorem 17. Every compact subset S of an ordered space X has a maximum and
a minimum.

Proof. Suppose S has no maximum, say. Consider the open cover of S by intervals
of the form (−∞, b) with b ∈ S.

From this we get an extreme value theorem for compact domains.

Corollary 18. Let f : A → X be a continuous function where X is an ordered
space. If A is compact, then f has a maximum and a minimum value.

Recall that linear continua are linearly ordered sets with the density and LUB
properties. Equivalently, they can be thought of as connected linearly ordered
spaces. What if you only have the LUB property in a ordered space, but not neces-
sarily the density property? (Recall that the LUB property is that any nonempty
set with an upper bound has a least upper bound.)

Lemma 19. Suppose that X is an ordered space with the LUB property. Then
every closed interval [a, b] is compact.

Proof. Let U be an open cover of [a, b]. Let S be the set of x ∈ [a, b] such that [a, x]
is covered by a finite subcover of U . Clearly a ∈ S. Let c be the LUB of S. We can
show that c ∈ S. From this it follows that c = b.

For the other direction we have the following:

Lemma 20. Suppose that X is an ordered space such that every closed interval is
compact subspace. Then X has the LUB property.
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Proof. Suppose that S is a non-empty set with element a, with upper bound b,
but with no LUB. Consider the open cover U of the subspace [a, b] by sets of the
form (1) [a, x) where x ∈ S and a < x, and (2) (y, b] where y is an upper bound
of S. Now consider a finite subcover of U , and note that its union must be of the
form [a, x0)∪(y0, b] for some x0 ∈ S and some y0 that is an upper bound that is not
a LUB. Since x0 ≤ y0, this union excludes x0. But the union must be all of [a, b],
a contradiction.

From these two lemmas we get the following:

Theorem 21. Suppose that X is an ordered space. Then X has the LUB property
if and only if every closed interval is compact.

We end the section with the Heine-Borel theorem for ordered spaces:

Theorem 22. Suppose that X is an ordered space with the LUB property. Then
a nonempty subset S ⊆ X is compact if and only if it is closed and bounded (from
above and below).

Proof. Suppose S is compact. Then it has a maximum and minimum, so is bounded
from above and below. Also, S is closed since it is compact and X is Hausdorff.

Suppose T is closed and bounded in X. Let a ∈ X be a lower bound and b ∈ X
be an upper bound, so that T ⊆ [a, b]. By Lemma 19, we have [a, b] is compact.
Also T is closed in [a, b], so is compact by Theorem 4.

6 Compactness in products

The Cartesian product of two compact space is compact; the proof given below
is fairly straightforward. This in turn implies that the finite Cartesian product of
compact spaces is compact. Actually, the arbitrary Cartesian product of compact
spaces is compact, but the proof is more difficult (and relies on the axiom of choice).
It is called Tychonoff’s Theorem, and will be discussed in another document.

Theorem 23. The product X × Y of two compact spaces X and Y is compact.

Proof. The proof is based on Proposition 6, so let U be a cover of X × Y by basic
open sets (for the standard basis of X × Y ). Let V be the collection consisting of
all open V ⊆ X such that V × Y has a finite cover by sets in U .

Let x ∈ X and observe that {x}×Y is compact since it is homeomorphic to Y .
Since U covers {x}×Y , there is a finite subset of U that covers {x}×Y . This finite
subcover will actually cover V × Y for some open neighborhood V of x ∈ X. In
other words, V ∈ V.

We conclude that V is a cover of X. Now take a finite subcover V0 of V. We
can then produce a finite subcover of U that covers X × Y .

A similar proof yields a proof of the following “tube lemma”:

Lemma 24 (Tube lemma). Assume Y is a compact space. Let W be an open
subset of X × Y containing {x} × Y where x is a point of a space X. Then there
is an open subset U of X such that U × Y (called a “tube”) is contained in W .
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Recall that a closed map is one for which the image of any closed subset in the
domain is closed in the codomain.

Corollary 25. If Y is compact then the projection X × Y → X is a closed map.

Proof. Let Z be a closed subset of X × Y , and suppose x ∈ X is not in the image
of Z under projection. Use the tube lemma applied to the complement W of Z.

Now we consider the issue of boundedness. In a metric space, we defined bound-
edness of a subset S in terms of the existence of an upper bound on distance between
points. For Rn this notion of boundedness is independent of whether you choose the
Euclidean metric, the product metric, or the taxi-cab metric. In Rn with the prod-
uct metric, it is clear that this notion of boundedness is equivalent to the following
notion:

Definition 3. Let X1 × · · · ×Xn be the finite Cartesian product ordered spaces.
A subset of X1× · · ·×Xn is bounded if the image under the projections to each Xi

is bounded from below and from above.

Lemma 26. Suppose X1, . . . , Xn are linearly ordered sets. Then every compact
subset of X1 × · · · ×Xn is closed and bounded.

Proof. Ordered spaces are Hausdorff, and the product of Hausdorff spaces is Haus-
dorff. Now use Theorem 10 and Corollary 18.

Lemma 27. Suppose A is a closed subspace of X × Y , and suppose the images
of A in X and Y are both contained in compact subspaces. Then A is compact.

Proof. Let B be a compact subspace of X containing the image of A in X, and
let C be a compact subspace of Y containing the image of A in Y . Then the
subspace B ×C is compact since B and C are compact. (Recall that the subspace
topology on B × C agrees with the product topology of the subspace topologies
on B and C individually.) Observe that A ⊆ B ×C. Since A is closed in X × Y it
must be closed in the subspace B × C. Now use Theorem 4.

Theorem 28. Suppose X1, . . . , Xn are linearly ordered sets with the LUB property.
Then a subspace of X1×· · ·×Xn is compact if and only if it is closed and bounded.

Proof. Lemma 26 gives one direction. So we can assume A is a closed and bounded
subspace of X1 × · · · ×Xn. Since A is bounded, its image in Xi is contained in a
closed interval [a, b]. By Lemma 19 the interval [a, b] is a compact subspace of Xi.
Now use Lemma 27.

Corollary 29 (Heine-Borel). A subspace of Rn is compact if and only if it is closed
and bounded.

7 Uncountability of perfect compact spaces

In this section we give an interesting proof of uncountability that is purely topo-
logical.

8



Definition 4. A subset A of a topological space X is perfect if A is equal to the
set of limit points of A.

Remark. If X is Hausdorff, then A is perfect if and only if it is closed and every
open subset of X intersecting A contains an infinite number of points of A. In
particular, nonempty perfect subsets of Hausdorff spaces are infinite.

Example 3. The space Rn is perfect (in itself). Every closed interval of R with
more than one point is perfect and compact. The subset Q is perfect in Q but is
not compact.

Theorem 30. Let X be a perfect compact Hausdorff space. Then X is uncountable.

Proof. Suppose (xi) is a (countable) sequence of points in X. Use the Hausdorff
property to form a nested decreasing sequence (Ui) of nonempty open subsets of X
such that xi is not in in the closure Ki of Ui for each i. Consider the intersection
of the nested compact subsets Ki. This intersection is nonempty, so contains a
point x not in the sequence (xi). (This construction uses the axiom of countable
choice).

In particular, closed intervals in R with more than one point are uncountable.
This ensures the uncountability of any set containing such a closed interval. In
particular, we have the following:

Corollary 31. Every interval of R with more than one point is uncountable. Every
nonempty open subset of R is uncountable.

8 The Cantor set

The Cantor set is one of the most important sets in analysis. It is an uncountable
compact subset of R with zero length (i.e., it has zero Lebesgue measure), and is a
simple example of a fractal. In this section we discuss the construction, and dervive
key properties of, the Cantor set. (We do not require results on measure theory
here).

Let K0 be the interval [0, 1]. From this we recursively form a subset Kn ⊆ [0, 1]
where each Kn is the union of 2n disjoint closed intervals of length 1/3n. The
construction is as follows. Let [a, b] be one of the intervals definingKn. Let r = b−a.
Then Kn+1 consists of the union of the 2n+1 intervals of the form [a, a + r/3]
or [b− r/3, b].

By induction, Kn consists of 2n disjoint closed of length 1/3n. So the total
length of the intervals for Kn is (2/3)n. The Cantor set C is defined to be the
intersection of these compact sets Kn. We use the subspace topology for C (which
is not the same as the order topology).

Each Kn is the finite union of compact subset of R, so Kn is compact. So we
get a nested sequence of compact sets. By the general theory of compact sets, the
intersection C is a nonempty compact subset of [0, 1]. But also observe that any
point that occurs as an endpoint of an interval defining Kn will also be an endpoint
of an interval defining Kn+1 so will be in the intersection. Thus C contains a
countable number of such endpoints. So we have the following:
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Proposition 32. The Cantor set C is an infinite compact subset of [0, 1].

Proposition 33. The Cantor set C is totally disconnection. In particular, C does
not contain any intervals of R except for singleton sets, and has an empty interior.

Proof. Let x ∈ C. Observe that the connected component of x in C must be a
subset of the connected component of x in Kn. This means that the diameter of
the connected component of x in C is at most 1/3n. This holds for all n, which
forces the connected component to be a singleton.

Proposition 34. The Cantor set C is perfect: C equals the set of limit points of C.

Proof. Since C is compact, it is closed. Thus the set of limit points of C is contained
in C.

Now suppose x ∈ C. Let U be an open neighborhood of x. Note that for
sufficiently large n, one of the defining intervals I of Kn will be contained in U ,
and both of the endpoints of I are in C.

Proposition 35. The Cantor set C is uncountable.

Proof. Since C is compact, perfect, and Hausdorff.

Observe that C contains points that do not occur as endpoints of the defining
intervals of any Kn. In fact, most points of C are not such endpoints. However,
such endpoints forms a dense subset of C.

9 Compactness in metric spaces

In this section we consider several applications of compactness to metric spaces.

9.1 Uncountability of a metric space

Proposition 36. A connected metric space with more than one point is uncount-
able. More generally, a metric space with a component with more than one point is
uncountable.

Proof. Let X be a connected metric space with more than one point. Fix x0 ∈ X
and consider the continuous map

x 7→ d(x, x0).

The image is a connected subspace of R, so must be an interval. Also, the image
contains 0 and at least one positive value, so we can appeal to Corollary 31.
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9.2 Diameter of a metric space

Throughout this section, X will refer to a metric space.
Recall that the diameter of a nonempty subset of a metric space X is the

supremum of the following set of distances: {d(a1, a2) | a1, a2 ∈ S}.

Proposition 37. Let S be a nonempty compact subset of a metric space X. Then
there are points x1, x2 ∈ S such that the diameter is d(x1, x2). In other words, the
diameter is the maximum, not just the supremum, of the distances between points
of S.

Proof. The distance function d : X ×X → R is continuous and S × S is compact,
so image d[S × S] is compact. Thus d[S × S] has a maximum.

9.3 Distance between a point and a subset

Let x ∈ X and S ⊆ X be a nonempty subset. Recall that the distance from x
to S, written d(x, S), is defined to be the infimum of d(x, s) as s varies in S. If S
is compact we have the following:

Proposition 38. Let S be a compact nonempty subset of a metric space X, and
let x ∈ X. Then there is a point s ∈ S such that d(x, S) = d(x, s). In other
words, d(x, S) is not just the infimum of d(x, s) as s varies in S, but is the minimum.

Proof. Use the fact that s 7→ d(x, s) is continuous for any fixed x ∈ X.

Similarly, we see that there is a farthest away point in S from x. We can use
the Heine-Borel to extend the above proposition to closed subsets S of Rn, but of
course there might not be a farthest away point in S in this case.

Proposition 39. Let S be a closed nonempty subset of Rn, and let x ∈ X. Then
there is a point s ∈ S such that d(x, S) = d(x, s). In other words, d(x, S) is not
just the infimum of d(x, s) as s varies in S, but is the minimum.

Proof. Fix a point s0 ∈ S, and let B = Br(x) be the closed ball of radius r equal
to d(x, s0). Let K = B ∩ S. By the Heine-Borel Theorem, K is compact. Observe
that d(x, S) = d(x,K), and then use the previous proposition.

9.4 Distance between subsets

Let A and B be nonempty subsets of X. Recall that the distance from A to B,
written d(A,B), is defined to be the infimum of d(a, b) as (a, b) varies in A × B.
If A and B are compact we have the following:

Proposition 40. Let A and B be nonempty compact subsets of a metric space X.
Then there is a point a ∈ A and a point b ∈ B such that d(a, b) = d(A,B).

Proof. Use the continuity of d : X ×X → R and the image of A×B.
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In particular, if A and B are disjoint, then the distance between A and B is
strictly positive.

We cannot extend the above result to closed subsets: consider X = R − {0},
where A is the set of positive real numbers and B is the set of negative real numbers.
Or consider the set defined by xy = 1 and y = 0 in R2. However, we do have the
following:

Proposition 41. Suppose A and B are disjoint nonempty subsets of a metric
space X where A is closed and where B is compact. Then d(A,B) > 0.

Proof. Consider the continuous function f : X → R defined by x 7→ d(x,A). The
image f [B] is compact, so f has a minimum. In other words, there is a point b ∈ B
such that d(b, A) ≤ d(x,A) for all x ∈ B. The distance d(b, A) is positive since b
is not in A = A. Note that d(b, A) ≤ d(A, y) ≤ d(x, y) for all x ∈ A and y ∈ B.
Thus d(A,B) ≥ d(b, A) > 0.

9.5 Contraction maps

Definition 5. Let X be a metric space. Then a contraction is a map f : X → X
such that there is a constant C < 1 where d

(
f(x), f(y)

)
≤ Cd(x, y) for all x, y ∈ X.

We know that non-expansive maps are uniformly continuous, so contraction
maps are of course continuous. Observe that if a metric space X has finite diam-
eter D and if f is a contraction with factor C, then the image fn[X] of the nth
iteration of f is a subset of diameter less than or equal to CnD. So if the intersec-
tion of the spaces fn[X] is nonempty, it must consist of a single point. Recall that
a fixed point for a function f : X → X is a point x ∈ X where f(x) = x.

Proposition 42. If X is a compact metric space then any contraction f has a
unique fixed point x0.

Proof. Let Kn be fn[X], the image of X under the n-th iteration of f . As discussed
above the intersection

⋂∞
n=1Kn has at most one point. Observe that each Kn is

compact, and the sequence (Ki) is nested. So the intersection is nonempty. Let x0

be the unique point of the intersection
⋂∞
n=1Kn. Observe that f(x0) = x0. Observe

also that any fixed point of f is in
⋂∞
n=1Kn.

9.6 Isometries

Definition 6. Let X,Y be metric spaces. Then an isometry is a map f : X → Y
such that d

(
f(x), f(y)

)
= d(x, y) for all x, y ∈ X.

Proposition 43. If X is a compact metric space, then any isometry f : X → X
is a homeomorphism.

Proof. Injectivity is clear. We establish surjectivity by assuming x is not in the
image of f , and derive a contradiction. Since f [X] is compact, hence closed, the
distance of x from f [X] is some positive ε > 0. If a point y has distance r to a
subset S ⊆ X, then f(y) has distance r to the image f [S] since f is an isometry.
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Let fn be the nth iteration of f , and observe that the distance from xn
def
= fn(x)

to fn+1[X] is ε. If i < j, then d(xi, xj) ≥ ε. Thus the set of xi forms a closed,
hence compact, subspace. But this space is infinite and discrete, which cannot be
compact.

So we have established that f is a bijection. A bijective isometry has an isometry
as an inverse, and so is a homeomorphism.

Remark. Note that there are isometries of the interval [0,∞) to itself that are not
bjective.

10 Uniform continuity

We start with the concept of a Lebesgue number, which a very useful tool in the
topology of metric spaces and analysis.

Definition 7. Let S be a nonempty subset of a metric space X and let U be a cover
of S. A Lebesgue number for U and S is a real number ε > 0 with the following
property: if A is a bounded subset of X intersecting S and if the diameter of A is
less than ε then A ⊆ U for some U ∈ U .

A key theorem of metric spaces is that there are Lebesgue numbers for open
covers of compact subsets:

Theorem 44. Let K be a nonempty compact subset of a metric space X. Then
every open cover U of K has a Lebesgue number for U and K.

Proof. Define a half-size ball for U to be an open ball Br(x) with the property
that the ball of twice the radius B2r(x) is contained in some U ∈ U . Let V be the
collection of half-size balls for U with center in K. Since U covers K, it follows
that V covers K as well. Let V0 be a finite subcover of V that covers K. For
each Vi ∈ V0, write Vi as Bri(xi) with xi ∈ K and ri > 0. Let ε > 0 be the
minimum of these radii ri.

Let A be a bounded subset of X intersecting K in a point x, and assume A has
diameter less than ε. Let Bri(xi) be a ball in V0 that contains x. Claim: A is a
subset of B2ri(xi). To see this, let y ∈ A and observe that

d(y, xi) ≤ d(y, x) + d(x, xi) < ε+ ri ≤ ri + ri = 2ri.

Observe that A ⊆ B2ri(xi) ⊆ U for some U ∈ U since B2ri(xi) ∈ V0 ⊆ V.

A corollary to this is the uniform continuity theorem.

Theorem 45 (Uniform Continuity). Let f : K → Y be a continuous function
between metric spaces where K is compact. Then f is uniformly continuous. In
other words, given ε > 0 there is an δ > 0 such that

d(a, b) < δ =⇒ d
(
f(a), f(b)

)
< ε

for all a, b ∈ K.
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Proof. Consider the open cover U of K consisting of open sets of the
form f−1[Bε/2(y)] where y ∈ Y . Let δ > 0 be a Lebesgue number for U and K.

Suppose that a, b ∈ K are such that dK(a, b) < δ. The diameter of {a, b}
is dK(a, b) which is strictly less than δ. Thus

{a, b} ⊆ f−1[Bε/2(y)]

for some y ∈ Y . In other words, f(a), f(b) ∈ Bε/2(y). By the triangle inequality,

we get the desired bound: dY
(
f(a), f(b)

)
< ε.

11 The Bolzano-Weierstrass theorem

The classical version of the Bolzano-Weierstrass theorem says that every bounded
sequence in Rn has a converging subsequence. A variant of this theorem says
that if K is a closed and bounded subset of Rn then every sequence in K has a
subsequence that converges to a point in K. This proved to be a very useful theorem
in analysis, and one of the original motivations to study compactness (culminating
in the work of Fréchet in 1906) was to identify more general spaces where this
result holds. Here we show that this property holds, almost, for compact spaces in
general.

Suppose (xi)i∈I is a sequence where the index set I is ordered such that I is
order isomorphic to N. We will take it as given that every infinite subset J of I
is order isomorphic to N under the order of J inherited from I. The restriction of
(xi)i∈I to such an infinite subset J gives what we call a subsequence (xi)i∈J of the
given sequence (xi)i∈I .

When dealing with subsequences (xi)i∈J of a sequence (xi)i∈I it is common to
replace the index set J with a standard indexing set such as N = {0, 1, . . .} or the
set of positive integers N1 = {1, 2, . . .} using the order isomorphism with J , but
such replacement of index set results in a sequence that is essentially equivalent
to the subsequence (xi)i∈J from the point of view of convergence. For example,
if ai = i + 1 are terms of a sequence indexed by I = N then (ai) gives a sequence
of positive integers. If we take J to be the set of even natural numbers, then the
corresponding subsequence would be a sequence of of odd positive integers. We can
write this subsequence as (i + 1)i∈J , but it is common to compose with the order
isomorphism N→ J (here n 7→ 2n) and write this sequence as (2i+ 1)i∈N.

Suppose that S is a subset of a topological space X. Recall that a limit point
of S is a point x ∈ X such that every neighborhood of x contains a point of S
not equal to x. Similarly a contact point of S is a point x ∈ X such that every
neighborhood of x contains a points of S including x itself if x ∈ S; in other words x
is in the closure of S. It will be convenient here to define a third type of nearby
point: call a point x ∈ X an accumulation point of S if every neighborhood of x
contains an infinite number of points of S. Thus every accumulation point of S is a
limit point of S, and every limit point is a contact point of S. As we have seen, if X
is a Hausdorff space, then limit points and accumulation points of a subset S are
the same thing. Recall that we have also defined accumulation points of sequences.
These two notions are closely related but differ in an essential point: a sequence (xi)
can repeat terms infinitely often resulting in an accumulation point that might not
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be an accumulation of the image S = {xi} of the sequence. However, we do have
the following two lemma:

Lemma 46. Let (ai) be a sequence of points in a topological space X. If x ∈ X is
an accumulation point of the set S = {ai} of values of the sequence, then x is an
accumulation point of (ai).

Lemma 47. Let X be a topological space. Then the following are equivalent:

1. Every infinite subset of X has an accumulation point.

2. Every sequence in X has an accumulation point.

Proof. First assume (1). Let (ai) be a sequence in X. If the image {ai} ⊆ X is
finite, then some value occurs for an infinite set of indices, and the existence of
an accumulation point of (ai) follows. If {ai} ⊆ X is infinite, then let x be an
accumulation point of the set {ai} and use the previous lemma.

Now assume (2). Let S be an infinite subset of X. Use the axiom of countable
choice to produce an injective map f : N → S. Note that f is a sequence in X so
has an accumulation point x. Observe that x is an accumulation point of the image
of f , and so is an accumulation point of S.

Accumulation points of sequences and limits of subsequences are closely related
as we will see in the next two lemmas:

Lemma 48. Let (ai) be a sequence of points in a topological space X. If (ai)
has a converging subsequence with limit x, then x is an accumulation point of the
sequence (ai).

Lemma 49. Let (ai)i∈I be a sequence of points in a topological space X. If x is
an accumulation point of the sequence (ai) and if x has a countable neighborhood
basis then (ai) has a subsequence converging to x.

Proof. Let {B1, B2, . . .} be the set of basic open sets in the neighborhood basis.
For k ≥ 1, define ik recursively: let ik be the smallest element of I such that
(i) aik ∈ B1 ∩ B2 ∩ · · · ∩ Bk, and (ii) such that ik > ik−1 if k > 1. Let J be the
collection of these ik. Then (ai)i∈J is the desired subsequence.

This gives us the following:

Proposition 50. Let X be a topological space such that every element of X has a
countable neighborhood basis. Then the following are equivalent:

1. Every infinite subset of X has an accumulation point.

2. Every sequence in X has an accumulation point.

3. Every sequence in X has a convergent subsequence.

We can now give two version of the Bolzano-Weierstrass theorem:

Theorem 51 (Bolzano-Weierstrass version 1). Let X be a compact topological
space. Then every infinite subset of X has an accumulation point, and every se-
quence in X has an accumulation point.
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Proof. Let S be an infinite subset of X. If x is not an accumulation point then there
is an open neighborhood U of x that intersects S in a finite set. Suppose S has
no accumulation points. Then we can cover X by open subsets whose intersections
with S are all finite. Use a finite subcover to derive a contradiction. The second
claim now follows from the first.

Corollary 52 (Bolzano-Weierstrass version 2). Let X be a compact topological
space such that every point has a countable neighborhood basis. Then every sequence
in X has a convergent subsequence.

Remark. Spaces such that every point has a countable neighborhood basis are
sometimes called “first countable spaces”. They include metric spaces, so we have
a Bolzano-Weierstrass theorem for metric spaces. We further explore this idea in the
context of metric spaces in the next section along with “second countable spaces”.
A second countable space is a topological space that has a countable basis, and so
is automatically a first countable space.

12 Sequential compactness

The notion of compactness we use today is not the original notion of compactness.
Fréchet in 1906 formulated an idea of compactness in terms of the existence of
converging subsequences of every sequence. In other words, compact spaces were
essentially the spaces possessing a Bolzano-Weierstrass theorem. Today we use
the term sequential compactness for this earlier version of compactness. The cur-
rent open cover notion of compactness has its origins in Heine’s proof that each
continuous function on a closed interval is uniformly continuous, which led to the
Heine-Borel theorem in Rn. Trying generalize the ideas of the Heine-Borel theorem
led to the open cover notion of compactness, which was used by Alexandroff and
Urysohn in the 1920s under the name “bicompactness”. In the 1930s Tychonoff
proved that the arbitrary product of compact spaces is compact under the open
cover definition of compactness, but this does not hold using the sequential def-
inition of compactness. This was one of the major reasons why the open cover
notion of compactness won out over the sequential notion of compactness. (In the
next section we will see that the countable product of sequential compact spaces is
sequentially compact.)

Definition 8. LetX be a topological space. If every sequence ofX has a convergent
subsequence then we say that X is sequentially compact. A subset S of X is
sequentially compact if it is sequentially compact in the subspace topology.

Many of the important theorems about compact spaces were originally proved
in terms of sequentially compact spaces. For example, the Bolzano-Weierstrass
theorem for sequentially compact spaces holds just by definition. We now consider
the sequential compact versions of some of the other basic theorems.

Proposition 53. If f : X → Y is a surjective continuous function, and if X is
sequentially compact space, then Y is sequentially compact.
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Proof. Recall that if a is the limit of sequence (ai) then f(a) is the limit of the
image sequence f(ai). From this fact, and the axiom of countable choice, we obtain
sequential compactness for Y .

Corollary 54. If X is sequentially compact, then any space homeomorphic to X
is sequentially compact.

The next two propositions have fairly straightforward proofs.

Proposition 55. A closed subset of a sequentially compact space is a sequentially
compact subset.

Proposition 56. The product of two sequentially compact spaces is sequentially
compact.

As remarked above, the above generalizes to arbitrary products for compact
spaces, but not for arbitrary products of sequentially compact spaces.

Some results for sequential compactness require a extra countability assump-
tion when compared to the analogous result for compactness. The following is an
example where we require the nesting be countable:

Proposition 57. Let X be a compact space and let (N1, N2, . . .) be a decreasing
nested sequences of nonempty closed subsets of X. Then

⋂∞
i=1Ni is nonempty.

Proof. Use the axiom of countable choice to form a suitable sequence with a con-
vergent subsequence.

Remark. The above result is enough to prove uncountability of any perfect se-
quentially compact Hausdorff space. The prove is similar to the proof for perfect
compact Hausdorff spaces.

For Hausdorff spaces we have the following, at least if there is a countable
neighborhood basis for each point:

Proposition 58. If Y is a sequentially compact subset of a Hausdorff space X,
and if every point of X has a countable neighborhood basis, then Y is closed in X.

Proof. Start with a limit point x of Y and form a sequence of points of Y converging
to x (using the axiom of countable choice). Now take a subsequences of this sequence
converging to a point in Y .

In many standard spaces, sequential compactness is equivalent to compactness:

Theorem 59. Let X be a topological space with a countable basis. Then X is
sequentially compact if and only if X is compact.

Proof. If X is compact, it is sequentially compact by the Bolzano-Weierstrass the-
orem (Corollary 52).

Suppose X is sequentially compact. Fix a countable basis of X. Suppose U is a
cover of X by basic open sets. Since U is countable, we can write its members in a
sequence (B1, B2, . . .). We claim that B1, . . . , Bk covers X for sufficiently large k.
Suppose not, and for each k let xk be a point of X not in B1 ∪ · · · ∪ Bk. By
Proposition 50 there is an accumulation point x ∈ X of (xk). In other words, every
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neighborhood of x contains infinitely many xk. Since x ∈ Bl for some l, we have
that Bl contains infinitely many xk. However, if k ≥ l then xk is not in Bl, a
contradiction.

Since every cover of X by basic open sets has a finite subcover, we conclude
that X is compact (Proposition 6).

We can adapt this theorem to metric spaces, even though not all metric spaces
have countable basis. The key is that compact metric spaces do in fact have count-
able basis.

Lemma 60. Let X be a metric space that is either compact or sequentially compact.
For any ε > 0, there is a finite cover of X by open balls of radius ε.

Proof. The proof for compact is straightforward: take a finite subcover of a cover
of X by open balls of radius ε. So assume X is sequentially compact. We can also
assume that X is nonempty, since the empty set is covered by the empty cover. We
recursively form a sequence (using the axiom of countable choice) as follows: let x1

be any point of X. Assuming x1, . . . , xk have been choosen, let xk+1 to be outside
of Bε(xi) for i ≤ k. If no such point exists we have our finite cover, so assume this
recursion gives an infinite sequence.

By Proposition 50 there is an accumulation point x ∈ X of the sequence (xk).
In other words, every neighborhood of x contains infinitely many xk. Take an open
ball of radius ε/2 around x and derive a contradiction.

Remark. In the above lemma and following proposition we require “compact or
sequentially compact”. This can simply be replaced by “compact” after proving
the equivalence of compact and sequentially compact.

Proposition 61. Let X be a metric space that is either compact or sequentially
compact. Then X has a countable basis.

Proof. By the above lemma we can form a finite cover Bn of X by open balls of
radius r = 1/n. Let B be the union

⋃∞
n=1 Bn (we need the axiom of countable

choice to form the sequence Bn). Observe that B is a countable basis for X.

Theorem 62. Let X be a metric space. Then X is sequentially compact if and
only if X is compact.

Proof. Suppose X is sequentially compact. Then X has a countable basis by the
above proposition. Thus X is compact by Theorem 59

Similarly ifX is compact, thenX has a countable basis by the above proposition.
Thus X is sequentially compact by Theorem 59

Remark. From this theorem we know we can extend any result about compact
metric spaces to sequentially compact metric spaces simply because the two notions
are identical for metric spaces. For example, the results of Section 9 extend to
sequentially compactness. Similarly, a Heine-Borel theorem holds for sequentially
compact metric spaces since such a result holds, by definition, for any compact
space. Since R is a metric space, we have the following extreme value theorem
(proved similarly to Corollary 18):
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Proposition 63. Let f : A → R be a continuous function. If A is sequentially
compact then f has a maximum and a minimum value.

What if R is replaced by another ordered space? This is more problematic
since a sequentially compact subset of an ordered set does not necessarily have a
maximum or minimum. See Section 13.1 for an example of a sequentially compact
ordered space that has no maximum.

13 Further Examples and Counterexamples (Optional)

13.1 A sequential compact that is not compact

We start by giving an example of a sequentially compact space that is not compact.
This example assumes some knowledge of the class of ordinals. Recall that the class
of ordinals is well-ordered. In particular, there is a first ordinal, written 0. There is
also a smallest ordinal ω1 such that the interval [0, ω1) is uncountable. We call ω1

the first uncountable ordinal. We also consider the closed interval [0, ω1], and ω1

is also the smallest ordinal such that [0, ω1] is uncountable since it is obtained by
adding one element to [0, ω1).

Lemma 64. The ordered space [0, ω1) has no maximum.

Proof. Suppose γ is a maximum. By the definition of ω1 the interval [0, γ) is count-
able since γ < ω1. So [0, ω1) = [0, γ] = [0, γ)∪{γ} is countable, a contradiction.

Lemma 65. The ordered space [0, ω1) is first-countable: every point has a countable
neighborhood basis.

Proof. Let x ∈ [0, ω1) and let x′ be the first ordinal larger than x. There are only
a countable number of y < x in [0, ω). Observe that if x > 0 then the collection
of open intervals {(y, x′) | y < x} is a countable neighborhood basis of x. Note
also that 0 is an isolated point, so {0} is open and {{0}} is a neighborhood basis
of 0.

Lemma 66. Every sequence in the ordered space [0, ω1) has an accumulation point.

Proof. Let (xi)i∈I be a sequence in [0, ω1). Note that by definition of ω1, we have
the interval [0, xi) is countable for each i ∈ I. Thus the union

A =
⋃
i∈I

[0, xi)

is countable (we may need the axiom of countable choice here). Since [0, ω1) is
uncountable, there must be an element in the complement of A, and such an element
is an upper bound of {xi}. Let x be the least upper bound of {xi}. Observe that x
is a limit point of {xi}. Since [0, ω1) is an ordered space, it is Hausdorff. Thus x is
an accumulation point of {xi}, and so an accumulation point of (xi).

Proposition 67. The ordered space [0, ω1) is sequentially compact but not compact.
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Proof. Sequential compactness follows from the above lemmas and Proposition 50.
Failure of compactness follows from Lemma 64 and Theorem 17.

Now we show that the hypothesis “every point of X has a countable neighbor-
hood basis” cannot be dropped from Proposition 58.

Proposition 68. The subspace [0, ω1) is a sequentially compact subspace of the
ordered space [0, ω1] that is not closed in [0, ω1].

Proof. Note that the subspace topology and the order topology of [0, ω1) agree
since [0, ω1) is a convex subset of [0, ω1]. So [0, ω1) is a sequentially compact subset
of [0, ω1]. Also, observe that ω1 is a limit point of [0, ω1) by Lemma 64.

Finally we note the following:

Proposition 69. The ordered space [0, ω1] is compact.

Proof. This follows from Theorem 21.

13.2 Countable products of sequentially compact spaces

Suppose (X1, X2, . . .) is a sequence of sequentially compact spaces. Here the index
set is I = N1 = {1, 2, . . . }. In this section we will see a proof that the Cartesian
product

∏∞
i=1Xi is also sequentially compact (using the axiom of choice).

Proposition 70. Suppose (X1, X2, . . .) is a sequence of sequentially compact
spaces. Then the Cartesian product

∞∏
i=1

Xi

is also sequentially compact (using the product topology).

Proof. Let (αj)j∈N be a sequence of points of the product
∏
Xi. Our goal is to

establish that (αj)j∈N has a converging subsequence. Note that each αj is itself a
sequence (aj,i)i∈I , where here aj,i ∈ Xi.

We now construct a sequence of infinite sets J0 ⊇ J1 ⊇ J2 ⊇ · · · .
Set J0 = N. Define Jn+1 recursively in terms of Jn as follows. Consider the
sequence (aj,n+1)j∈Jn in Xn+1. Since Xn+1 is sequentially compact, there is an
infinite subset Jn+1 ⊆ Jn such that (aj,n+1)j∈Jn+1 converges in Xn+1. This gives
a nested decreasing sequence (Ji)i∈N of infinite subsets of N (using the axiom of
choice).

Let n1 be the smallest element of J1, and for each k ≥ 1 let nk+1 be defined
recursively as the smallest element of Jk+1 such that nk+1 > nk. Let J∞ be the
set {n1, n2, n3, . . .}.

We would like to show that (αj)j∈J∞ is a convergent subsequence of (αj)j∈N
in the product

∏
Xi. To do so first fix i0 ∈ I and consider the projection

map πi :
∏
Xi → Xi0 and the associated projected sequence (πi0(αj))j∈J∞ . This

sequence is just (aj,i0)j∈J∞ . Note that J ′i0
def
= J∞ − {n1, . . . , ni0−1} is a subset

of Ji0 . Since (aj,i0)j∈Ji0 converges in Xi0 by definition of Ji0 , it follows that the
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subsequence (aj,i0)j∈J′
i0

converges in Xi0 as well. Since J∞ is just J ′i0 with a finite

set of integers added, (aj,i0)j∈Ji∞ must also converges in Xi0 . In other words, the
sequence (πi0(αj))j∈J∞ coverges in Xi0 .

This convergence holds for each i0 ∈ I. It is a basic property of product spaces
that (αj)j∈J∞ converges in

∏
Xi. This establishes the sequential compactness

for
∏
Xi.

13.3 Uncountable products

Let 2 be the set {0, 1} with the discrete topology. Note that 2 is both compact and
sequentially compact. (Also note that if we use von Neumann’s definition of ordinal
numbers then 2 is just 2). Let Λ = 2N be the set of functions N → 2. The goal of
this section is to show that the Cartesian product 2Λ is not sequentially compact.
It is in fact compact by Tychonoff’s theorem (which we will not show here, but note
that it uses the axiom of choice), so 2Λ gives an example of a sequentially compact
space that is not compact. This will also establish that Λ is uncountable (a well-
known fact, but this gives another proof) since countable products of sequentially
compact spaces are sequentially compact.

Proposition 71. The space 2Λ is not sequentially compact.

Proof. We prove 2Λ is not sequentially compact by exhibiting a sequence in 2Λ

with no converging subset. First observe that 2Λ can be thought of as the set of
functions Λ → 2. The sequence we exhibit is (hk)k∈N where hk : Λ → 2 is defined
by the rule λ 7→ λ(k). Recall that elements of Λ are functions λ : N → 2, so this
definition makes sense. We suppose (hk)k∈N has a convergent subsequence (hk)k∈I
and derive a contradiction.

Let λ ∈ Λ be a given function λ : N → 2. Let πλ : 2Λ → 2 be the λ-
projection map. By continuity of πλ the image of the converging sequence (hk)k∈I
gives a converging sequence (πλ(hk))k∈I in 2. Note that the λ-component of hk
is hk(λ), and recall that hk(λ) = λ(k). So the sequence (πλ(hk))k∈I is just (λk)k∈I .
Hence (λk)k∈I converges in 2. Since 2 is discrete, this just means that there ex-
ists an integer Nλ ∈ I such that λi = λNλ for all i ≥ Nλ with i ∈ I. In other
words, (λk)k∈I is eventually stable on I.

This stability on I would have to hold for all functions λ : N→ 2. However, we
can define a function λ such that (1) λ(k) = 0 for all k 6∈ I and (2) the values of λ
alternate on I. In other words, the sequence of values on I is (0, 1, 0, 1, 0, 1, . . .).
This violates that stability claim, giving us our contradiction.
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