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Problems 1–9. Finite and algebraic extensions. (Assume that E is a field extension of the field F .)

Definition 1. Suppose E is an extension field of the base field F . We say that E is a finite extension

of F if the dimension [E : F ] is finite. The dimension [E : F ] is also called the degree of the field
extension E over F . We say that E is an algebraic extension of F if every element of E is algebraic
over F .

1. Recall that E is a vector space over F (why?). Show that if the dimension n = [E : F ] is finite
then E is an algebraic extension of F . In fact, every ↵ 2 E is a root of a nonzero polynomial in F [X]
of degree at most n. Hint: can 1, ↵, ↵2, . . . ,↵n be linearly independent?

2. Show that C is an algebraic extension over R, but not over Q. Hint: for Q the dimension is infinite,
but that is a red herring. Use famous theorems about ⇡ and/or e instead.

3. Suppose that L is a finite extension of E with basis `1, . . . , `m, and suppose that E is a finite extension
of F with basis e1, . . . , en. Show that elements of the form ei`j form a basis for L as an F -vector space.
Conclude that [L : F ] = [L : E][E : F ].

4. Suppose that R is an integral domain containing the field F . Then R is a F -vector space. Show
that if the dimension is finite, then R is a field. Hint: if v1, . . . , vn 2 R is a basis and ↵ 6= 0 then the
vectors ↵v1, . . . ,↵vn are linearly independent, so must be a basis; write 1 in terms of this basis.

5. Show that ↵ 2 E is algebraic over F if and only if F [↵] is a field of finite dimensional over F .

6. Show that if ↵1,↵2, . . .↵n 2 E are algebraic over F, then F [↵1,↵2, . . .↵n] is a field of finite dimension
over F .

7. Using the previous problem, show that if ↵,� 2 E are algebraic over F , then so are their sum and
product. Show that if ↵ 2 E is algebraic over F and nonzero, then ↵�1 is algebraic over F . Conclude
that the subset of all elements of E that are algebraic over F forms a subfield of E.

8. Show that if L is an algebraic extension of E, and E is an algebraic extension of F , then L is an
algebraic extension of F . Hint: if ↵ 2 L has minimal polynomial g 2 E[X], let �0,�1, . . . ,�n�1 be the
coe�cients of g. What do you know about [E0[↵] : E0] and [E0 : F ] for E0 = F [�0,�1, . . . ,�n�1]?

9. Suppose E is a finite extension of F . Show that [E : F ] = 1 if and only if E = F .

Problems 10–11. Algebraically closed fields. (Let F be a field)

Definition 2. Let E be an extension field of the field F . We say that E is an algebraic closure of F
if (i) E is algebraic over F , and (ii) there is no field extension E0 of E with E0 6= E that is algebraic
over F .

Definition 3. We say that a field E is algebraically closed if every irreducible polynomial f 2 E[X] is
linear. Thus E is algebraically closed if and only if every nonconstant polynomial in E[X] has a root.

10. Show that if E is an algebraic closure of F if and only if (i) E is algebraic over F , and (ii) E is
algebraically closed.

11. Show that if F is a subfield of an algebraically closed field E, then E contains a unique subfield that
is an algebraic closure of F . For example, the fundamental theorem of algebra says C is algebraically
closed. Thus Q has a unique algebraic closure Q in C.

It turns out that algebraic closures exist for any F and are unique up to isomorphism. (We will not
really need the uniqueness, but it is an important result to know).

Fact. Every field F has an algebraic closure. Any two algebraic closures of F are isomorphic with an

isomorphism fixing F .
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Problems 1–3. Splitting fields. (Let F be a field, which we call the base field.)

Definition 1. Let E be a field. If f 2 E[X] is a nonconstant polynomial that factors into linear factors
in E[X], then we say that f splits in E.

Definition 2. Let E be a field extension of F . Let f 2 F [X] be a nonconstant polynomial. Then E is
a splitting field of f over F if (i) f splits in E, and (ii) E = F [↵1, . . . ,↵n] where ↵i are the roots of f
in E.

1. Let f 2 F [X] be a nonconstant polynomial, and let L be a field extension of F in which f splits.
Show that there is a unique subfield of L that is a splitting field of f over F . This applies, for example,
if L is an algebraically closed field containing F .

2. Show that there is a splitting field for any nonconstant f 2 F [X]. Hint: use the above where L is
an algebraically closed field containing F . For example, if F = Q you can work in C. Your can also
construct a splitting field directly without assuming the existence of such an L: let F1 = F [X]/ hf1i
where f1 is a nonlinear irreducible factor of f . Then form a sequence F1 ( F2 ( F3 ( · · · in a similar
way until you reach a splitting field. Later we will show that two splitting fields are isomorphic (with
an isomorphism fixing F ), so the actual method of construction is not so critical.

3. Show that splitting fields are finite-dimensional extensions of the base field.

Problem 4–5. Galois extensions. (Let F be a field, which we call the base field)

Definition 3. Let E be a finite extension of F . We say that E is a Galois extension of F if there is a
nonconstant f 2 F [X] with no multiple roots in E such that E is the splitting field of f over F .

For such an extension E, theGalois group Gal(E/F ) of E over F is the group of (ring) automorphisms
of E that fix the base field F .

Let H be a subgroup of the Galois group G. The fixed field of H, written EH , is defined to be the
set of elements of E fixed by every g 2 H.

4. Let E be a finite Galois extension of F . Verify that the Galois group is indeed a group under
composition. (We will later see that this group is finite.) Let H be a subgroup of the Galois group.
Show that EH is indeed a field extension of F contained in E. (Later we will show that EG = F .)

5. Show that Q[
p
d ] is Galois over Q. Show that Q[21/4, i] is Galois over Q. Show that if ⇣6 2 C

is a primitive sixth root of unity, then Q [⇣6] is Galois over Q. Show that if E is a finite field of
characteristic p, then E is Galois over Fp. (Hint: find a polynomial with E as its set of roots).

Problems 6–9. Extensions of homomorphisms. (Let � : R1 ! R2 be a homomorphism between commu-

tative rings with unity.)

6. Explain why � extends to a unique homomorphism �X : R1[X] ! R2[X] that sends X to X. If �
is injective, show that �X is a degree-preserving injection. If � is an isomorphism, show that �X is an
isomorphism. When � : F1 ! F2 is an isomorphism between fields, explain how the factorization of a
nonzero polynomial f 2 F1[X] in F1[X] is related to the factorization of �Xf in F2[X].

7. Given f 2 R1[X] and ↵ 2 R1, show that �
�
f(↵)

�
= (�Xf)(�↵). Conclude that if ↵ is a root of f ,

then �(↵) is a root of �Xf .

8. For any f 2 R1[X], construct a homomorphism R1[X]/ hfi ! R2[X]/ h�Xfi. Show that if � is an
isomorphism, then the resulting homomorphism on quotients is also an isomorphism. Hint: first form
the composition R1[X] ! R2[X] ! R2[X]/ h�Xfi.
9. Suppose � : F1 ! F2 is an isomorphism between fields, and that f 2 F1[X] is irreducible. Let E1 be
an extension of F1 containing a root ↵ of f . Let E2 be an extension of F2 containing a root � of �Xf .
Show there is a unique isomorphism F1[↵] ! F2[�] that extends � and sends ↵ to �.
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Our goal is to prove the following “extension lemma”, and then derive significant consequences.

Lemma. Let f 2 F [X] be a nonconstant polynomial where F is a field. Let E and E

0 be splitting fields
of f over F . Let L be a subfield of E that contains F . Then every homomorphism � : L ! E

0 fixing F

can be extended to a homomorphism E ! E

0. If f does not have multiple roots in E

0, then there are
exactly [E : L] such extensions. (In general, whether or not f has multiple roots, [E : L] is an upper
bound.)

Problems 1–4. Proof of the lemma. (Assume F , f , E, E0, L, and � are as above.)

1. Suppose that ↵ 2 E is a root of f . Let f1 be the minimal polynomial of ↵ over L. We know
from GT2.7 that any extension of � to L[↵] ! E

0 must map ↵ to a root of �
X

f1. Conclude that the
number of such extensions is bounded by the number of roots of �

X

f1 in E

0.

2. Let ↵ and f1 be as above. Show that �

x

f1 is a polynomial of degree
⇥
L[↵] : L

⇤
that divides f

in E

0[X]. Show that it has at least one root in E

0 and at most
⇥
L[↵] : L

⇤
roots in E

0. Show that it has
exactly

⇥
L[↵] : L

⇤
roots if f does not have multiple roots in E

0.

3. Let ↵ and f1 be as above. Let L

0 be the image of L under �. For any root � of �
X

f1, use GT2.9
to show that there is a unique extension L[↵] ! L

0[�] of the isomorphism L ! L

0 that sends ↵ to �.
Conclude that the total number of homomorphisms L[↵] ! E

0 extending � is equal to the number of
distinct roots of �

x

f1 in E

0.

4. Prove the lemma. Hint: induction on [E : L]. If E is not L then consider E over L[↵] where ↵ is a
root of f in E but not in L. Use 1–3 above to consider extensions from L to L[↵], and the induction
hypothesis to move from L[↵] to E.

Problems 5–10. Consequences of the lemma. (Let F be a field.)

5. Suppose E and E

0 are splitting fields of a nonconstant polynomial f 2 F [X]. Show that any
homomorphism � : E ! E

0 fixing F is actually an isomorphism. Furthermore, number of distinct roots
of f is the same in E and E

0. Hint: Let E00 be the image. Observe that f = �

X

f must factor into linear
factors in E

00[X], and the number of distinct factors is the same in E

00[X] and E[X].

6. Conclude that any two splitting fields E,E

0 of a polynomial f 2 F [x] are isomorphic with an
isomorphism fixing the base field. Show that if f has distinct roots in E (or equivalently in E

0), then
there are exactly [E : F ] such isomorphisms. Conclude also that [E : F ] = [E0 : F ].

7. Prove the following.

Theorem. If E is a finite Galois extension of F , then there are exactly [E : F ] elements in the Galois
group of E over F .

8. Suppose that E is a finite Galois extension of F and that L is an intermediate field between F and E.
Show that E is Galois over L, and that Gal(E/L) is a subgroup of Gal(E/F ).

9. Prove the following. (Hint: [E : EG][EG : F ] = [E : F ]. Show that [E : EG] = |G| = [E : F ] by the
earlier theorem. Why is Gal(E/E

G) = G?)

Theorem. Suppose E is a finite Galois extension of F , and that G is the Galois group of E over F .
Then E

G = F .

10. Show that if E is a splitting field over F , and L is an intermediate field between F and E, then any
automorphism of L fixing F can be extended to an automorphism of E.
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Definition 1. Let E be a finite Galois extension of F with Galois group G. Let ↵ 2 E. Then any
element of the form �↵ with � 2 G is called a G-conjugate of ↵ (or simply a conjugate of ↵ if G is clear
from context).

Problems 1–3. Conjugates. (Let E be a finite Galois extension of F with Galois group G.)

1. Show that ↵ 2 E has at most [E : F ] conjugates, and is in F if and only if it has only 1 conjugate.

2. Suppose that ↵ 2 E has minimal polynomial f 2 F [X] over F . Show that any conjugate of ↵ is a
root of f . (We will show every root is a conjugate later). Conclude that if � 2 G, then X��↵ divides f
in E[X].

3. Let ↵ 2 E, and let H = {� 2 G |�↵ = ↵}. Show that H is a subgroup of G. Given �, ⌧ 2 G,
show that �↵ = ⌧↵ if and only if �H = ⌧H as cosets. Show that the map �H 7! �↵ is a (well-
defined) bijection between the (left) cosets of H and the G-conjugates of ↵. Conclude that the number
of G-conjugates of ↵ is [G : H]. Conclude that the number of G-conjugates of ↵ divides [E : F ].

Problems 4–5. Minimal Polynomial Formula. (Let E be a finite Galois extension of F with Galois

group G. Let ↵ 2 E, and let ↵1, . . . ,↵m be the distinct G-conjugates of ↵).

4. Let f be the minimal polynomial of ↵ in F [X]. Show that
Qm

i=1(X � ↵i) divides f in E[X].

5. Let � 2 G. Show that � permutes the set of conjugates {↵1, . . . ,↵m}. Let h =
Qm

i=1(X � ↵i). Show
that �Xh = h. Conclude that h 2 F [X]. Now prove the following theorem and corollary:

Theorem. Let E be a finite Galois extension of F with Galois group G. Let ↵1, . . . ,↵m be the G-

conjugates of ↵ 2 E. Then the minimal polynomial f of ↵ in F [X] is

f(X) =

mY

i=1

(X � ↵i).

Corollary. Let E be a finite Galois extension of F . If f 2 F [X] is irreducible, and if at least one root

of f is in E, then f splits in E and f has distinct roots in E.

Problems 6–10. Galois group as a permutation groups. (Let E be a finite Galois extension of F with

Galois group G.)

6. Let f be a polynomials that splits in E. Show that each element of G permutes the roots of f . Thus
if we number the roots of f as 1, 2, . . . ,m then each element of G can be assigned to a permutation
in Sm. Show that the map G ! Sm is a homomorphism.

7. Let f be chosen so that E is the splitting field of f over F . Show that the homomorphism G ! Sm

discussed above is injective. So, in this case, we can represent G as a subgroup of Sm.

8. Show that if f is an irreducible polynomial in F [x] that splits in E, then G acts transitively on the
roots of f . Thus the image of G in Sm acts transitively on {1, 2, . . . ,m}. (G acts transitively on a set

means that given any two elements of the set, you can find an element of G that maps the first element
to the second.)

9. Suppose that E is the splitting field of an irreducible cubic f 2 F [x] (with distinct roots). Use
Problems 6–8 above to the represent the Galois group as a subgroup of S3. List the possible subgroups
of S3. What about if f is an irreducible quadratic?

10. Let E = Q
�
21/4, i

�
. Show that E is Galois over Q, and that its Galois group G has 8 elements.

(Hint: what is the degree of Q
�
21/4

�
over Q?) Describe G explicitly based on the images of 21/4 and i.

Describe how the elements of G permute the roots of X4 � 2. Now relate G to the symmetries of the
square (the dihederal group with 8 elements), and conclude that G is isomorphic to this dihederal group.
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Our next goal will be to prove the following.

Theorem (Primitive Element Theorem). Let L be an extension of F . If there is a finite Galois exten-
sion E of F containing L, then there is an element ↵ 2 L such that L = F [↵].

Problems 1–3. Intermediate fields. (Let E be a finite Galois extension of F with Galois group G.)

1. Let L be an intermediate field between F and E. Recall that E is Galois over L, and that the Galois
group of E over L is the following subgroup:

GL
def
=

�
� 2 G |�� = � for all � 2 L

 
.

Observe that the map L 7! GL maps the set of intermediate subfields between F and E to the finite
set of subgroups of G.

2. Suppose L and L0 are intermediate fields between F and E. Show that if L 6= L0 then GL 6= GL0 .
Hint: Suppose GL = GL0 . So EGL = EGL0 . Now use a previous theorem.

3. Show that there are only a finite number of intermediate fields between F and E.

Problem 4–6. Some linear algebra. (Let V be a vector space over F .)

4. Consider the set {u+ t(v � u) | t 2 F} where u, v 2 V . We call such a set a “line”. Given a
subspace W ✓ V and such a line, show that either the line is contained in W , or intersects W in at
most one point.

5. Let W1 and W2 be two distinct proper subspaces of V . Show that there is a vector w 2 V which is
not in the union of W1 and W2. (Hint: let u 62 W1 and v 62 W2. Consider the associated line. How does
this line intersection W1 and W2? If F = F2 then a separate argument must be given.)

6. Generalize the above to the following proposition. How is the assumption that F is infinite used in
your proof? Hint: use induction, and lines.

Proposition. Let V be a vector space with infinite scalar field F . Let W1, . . . ,Wn be a finite collection
of proper subvector spaces. Then there is a vector of V not in the union

S
Wi.

Problem 7–9. The Primitive Element Theorem. (Let E be a finite Galois extension of F .)

7. Suppose F is infinite. Let L be an intermediate field between F and E. Show that L = F [↵] for
some ↵ 2 L. Hint: use the above proposition with V = L.

8. Prove that the primitive element theorem holds for finite F as well. Hint: use the following fact.

Fact. If F is a field then any finite subgroup of F⇥ is cyclic.

9. Let E = Q
⇥
21/4, i

⇤
as in Problem 10 of GT4. Find ↵ 2 E such that E = Q[↵]. Hint: find ↵ 2 E such

that �↵ 6= ↵ for all non-identity elements � 2 G. Show that such ↵ cannot be in a proper subfield L
of E intermediate between Fand E.
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Problems 1–5. Multiple roots and derivatives. Perfect fields. (Let F be a field.)

Proposition. Suppose f 2 F [X] splits in an extension E and f 6= 0. Then f has a multiple root in E

if and only if gcd(f, f 0) is of positive degree.

Corollary. Suppose f 2 F [X] is irreducible and splits in an extension E. Then f has multiple roots

in E if and only if f

0 = 0.

Definition 1. Suppose f 2 F [X] is nonzero. If f splits with distinct roots in an extension E we say f

is separable. So if f is irreducible, f is separable if and only if f 0 6= 0. The field F is called perfect

if f 0 6= 0 for all irreducible f 2 F [X].

1. Prove the above proposition and corollary.

2. Describe the polynomials f 2 F [X] with f

0 = 0. (In both characteristic 0 and positive characteristic).
Conclude that any field of characteristic 0 is perfect.

3. Suppose that F is a field of characteristic p > 0, and that F p = F where F p be the set of pth powers.
Show, for all f 2 F [X], that f 0 = 0 if and only if f is of the form (f0)p for some f0 2 F [X]. Conclude
that every irreducible polynomial has nonzero derivative, and that F is perfect.

4. On the other hand, suppose F

p 6= F where F has characteristic p > 0. Let c 2 F where c 62 F

p.
Show X

p � c is irreducible and has zero derivative. Conclude that F is not perfect. Hint: If r, in some
extension E, is a root, then c = r

p. So r 62 F , but Xp � c = (X � r)p in E[x]. Suppose that g 2 F [x] is
an irreducible factor, so g factors as a power of (X � r) in E[x]. So g has multiple roots. Now use the
Corollary to show that g has degree p.

5. Let F be a field of characteristic p > 0. Show that X

p � 1 = (X � 1)p, and conclude that the
homomorphism x 7! x

p is an injection F

⇥ ! F

⇥. If F is finite, show it is a surjection. Show that if F
is finite then F

p = F , and so F is perfect. Hint: what is the kernel of x 7! x

p?

Problems 6–9. Separable extensions. (Let F be a field and let E be a finite extension of F .)

Definition 2. An algebraic extension L of F is called separable over F if the minimal polynomial
in F [X] of every element of L is separable.

6. Suppose E is Galois over F . Show that any intermediate L with F ✓ L ✓ E is separable over F .

7. Show that a nonconstant f 2 F [X] is separable if and only if it factors into distinct (nonassociate)
separable irreducible polynomials. Suppose L = F [↵1, . . . ,↵n] where the minimal polynomial of each ↵i

in F [X] is separable. Show that L is contained in a finite Galois extension of F , and that L is separable.

8. Prove the following:

Proposition. Let L be a finite extension of F . The following are equivalent.

1. L is separable over F .

2. L is contained in a finite Galois extension of F .

3. L = F [↵] where the minimal polynomial of ↵ in F [X] is separable.

9. Show that if F is perfect, then any algebraic extension of F is separable.
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Problems 1–3. Subgroups are Galois groups. (Let E be a finite Galois extension of F with Galois

group G. Let H be a subgroup of G, and let EH
be the fixed field of H.)

1. Show that H is a subgroup of Gal
�
E/EH

�
.

2. Let ↵ 2 E be such that E = F [↵]. Note that E = EH [↵]. Consider the following polynomial

g
def
=

Y

�2H

�
X � �(↵)

�
.

Show that g 2 EH [X]. Use results of GT4 to show that g divides the minimal polynomial of ↵ over EH ,
hence g is the minimal polynomial of ↵ over EH .

3. Conclude that
⇥
E : EH

⇤
= |H|. However, by GT3, we know that

⇥
E : EH

⇤
=

��Gal
�
E/EH

���.
Conclude that H = Gal

�
E/EH

�
.

Proposition. Let E be a finite Galois extension of F with Galois group G. Then every subgroup of G
is itself a Galois group. More specifically, if H is a subgroup of G, then H = Gal

�
E/EH

�
.

Problem 4–5. The Galois correspondence. (Let E be a finite Galois extension of F with Galois group G.

For any intermediate field L, let GL = Gal(E/L).)

4. Rephrase the above proposition as follows. If H is a subgroup of G, then GEH = H.

5. Let L be an intermediate field between F and E. Show that EGL = L, and prove the following
theorem. Hint: use GT3.9.

Theorem (Galois Correspondence). Let E be a finite Galois extension of F with Galois group G. There

is an inclusion reversing bijection between (i) the set of subgroups of G and (ii) the set of subfields L
of E that contain F . The bijection from (i) to (ii) sends a subgroup H to EH

. The inverse bijection

from (ii) to (i), which is also inclusion reversing, sends an intermediate field L to GL.

Problem 6–9. Normal subgroups. (Let E be a finite Galois extension of F with Galois group G. Let H
be a subgroup of G.)

6. Suppose H is a normal subgroup. Show that if � 2 EH , then all its G-conjugates are in EH .

7. Suppose H is a normal subgroup. Show that EH is Galois over F . Hint: write EH = F [�] for
some � 2 E, and consider the splitting field (in E) of the minimal polynomial of �.

8. Suppose EH is a Galois extension of F . Show that if ↵ 2 EH and � 2 G then �↵ 2 EH . Hint: By
the minimal polynomial formula, the minimal polynomial f 2 F [X] of ↵ has �↵ as one of its roots.

9. Suppose EH is a Galois extension of F . Show that the map G ! Gal
�
EH/F

�
sending � to its

restriction to EH is a group homomorphism (and is well-defined). Identify its kernel and image. Hint:
For the image, consider GT3.10 (extension property), or just give a counting argument. Conclude thatH
is a normal subgroup of G. Prove the following:

Theorem (Galois Correspondence, Part 2). Under the bijections of the previous theorem, normal sub-

groups of G correspond to Galois extensions of F (contained in E). If H is a normal subgroup of G
and EH

is Galois over F , then

Gal
⇣
EH/F

⌘
⇠= G/H.
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Problems 1–4. The top-down approach, where we start with E and form F . (Let E be a field. The

automorphisms of E form a group, perhaps an infinite group: see Problem 7 below for an example.

Let G be a finite subgroup of the automorphism group of E, and let F = EG
be the field fixed by G.)

1. Let ↵ 2 E, and let ↵1, . . . ,↵n be all the distinct elements of the form �↵ where � 2 G. Show
that f =

Q
(X � ↵i) is in F [X], and is the minimal polynomial of ↵ over F . Conclude that E is

algebraic and separable over F , and that the minimal polynomial of any element of E splits in E with
degree at most |G| and with distinct roots in E.

2. Let L be any finite extension of F contained in E. Since L = F [↵] for some ↵ 2 E, show that

[L : F ]  |G|.

Conclude that E itself is a finite extension of F with [E : F ]  |G|.
3. Thus E = F [↵] for some ↵ 2 E. Show that E is the splitting field of the minimal polynomial of ↵
over F . Conclude that E is Galois over F .

4. Show that G is a subgroup of Gal(E/F ), so |G|  [E : F ]. Prove the following:

Theorem. Let E be a field. Let G be a finite subgroup of the automorphism group of E. Then E is a

finite Galois extension of F = EG
with Galois group G.

Problems 5–7. Numerically Galois extensions. As we will show, if E is a finite extension of F then

there are at most [E : F ] automorphism of E fixing F . We now develop the point of view that Galois

extensions are extensions with as many such automorphisms as possible. (Let E be a finite extension

of F . Let G be the group of automorphisms of E which fix F ).

5. Show that G is finite. Hint: write E = F [↵1, . . . ,↵k] and consider the set of roots R in E of the
minimal polynomials over F of the elements ↵i. Show that G injects into the permutations group SR.

6. Show that |G| divides [E : F ], so |G|  [E : F ]. Show that |G| = [E : F ] if and only if [EG : F ] = 1.
Hint: use the above theorem with F 0 = EG.

Definition. Let E be a finite extension of F . If the number of automorphisms of E fixing F is [E : F ]
then we say that E is numerically Galois over F .

7. Show that E is numerically Galois over F if and only if E is Galois over F .

Problems 8–10. Examples of the top-down approach. (Let K be a field. These problems assume knowl-

edge of fields of fractions.)

Fact. Suppose R is an integral domain, and that F is a field. Then any injective ring homomor-

phism R ! F extends uniquely to a homomorphism from the field of fractions of R to F .

8. Consider the evaluation homomorphism K[X] ! K[X] which sends X to X � 1. Show that it is an
isomorphism. Show that it extends to an automorphism � of K(X). Show that if K is infinite, then �
has infinite order in the automorphism group of K(X). Thus automorphism groups can be infinite.

9. Suppose that K contains an element ⇣ 6= 1 such that ⇣3 = 1. Show that the evaluation homo-
morphism K[X] ! K[X] which sends X to ⇣X is an isomorphism. Conclude that it extends to an
automorphism ⌧ of K(X) such that ⌧3 is the identity map. Let G be the group generated by ⌧ .
Show that K(X)G = K(X3). Hint: show X3 2 K(X)G, and that X satisfies a cubic with coe�cients
in K(X3).

10. Consider the evaluation homomorphism K[X] ! K(X) which sends X to 1/X. Show that it
extends to an automorphism � of K(X). Show that �2 is the identity map. Let G be the cyclic group
generated by �. Show that K(X)G = K

�
X + X�1

�
. Hint: show X + X�1 2 K(X)G, and that X

satisfies a quadratic with coe�cients in K
�
X +X�1

�
.
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Cyclotomic extensions.

Definition 1. Roots of Xn � 1 in a field E are called nth roots of unity. If an nth root of unity has
multiplicative order exactly n then it is called a primitive nth root of unity.

Definition 2. The nth cyclotomic extension of a field F is the splitting field of Xn � 1 over F . Let µn

be the multiplicative group of n roots of unity in the nth cyclotomic extension of F .

Fact. Let F be a field. Then any finite subgroup of F

⇥
is cyclic. If C is a cyclic group of order n then

there are �(n) elements which generate C where �(n) is the Euler � function.

Problems 1–2. Cyclotomic field extensions. (Let F be a field, and n a positive integer. Assume that the

characteristic of F does not divide n; for example, this holds if F has characteristic zero.)

1. Show that the nth cyclotomic extension of F is Galois. Show that the nth roots of unity form a
cyclic subgroup of F⇥ of order n, and that there are �(n) primitive nth roots of unity.

2. Let E be the nth cyclotomic extension of F . If ⇣n 2 E is a primitive nth root of unity then E = F [⇣n].

Problems 3–9. The Galois group of the cyclotomic extension. Cyclotomic polynomials. (Let F be a

field, and n a positive integer. Assume that the characteristic of F does not divide n. Let E be the nth

cyclotomic extension of F , and let ⇣n 2 E be a primitive nth root of unity. Let G be the Galois group

of E over F .)

3. Let � 2 G. Show that if ↵ 2 E is a primitive nth root of unity, then so is �↵. Conclude that

�⇣n = ⇣

m(�)
n

for some m(�) prime to n.

4. Let � and m(�) be as above. Show that we can think of m(�) as an element of (Z/nZ)⇥, and if
we do so then m(�) is unique. Show also that �(↵) = ↵

m(�) for all ↵ 2 µn. Conclude that m(�) is
independent of the choice of primitive nth root of unity ⇣n in E.

5. Show that the map G ! (Z/nZ)⇥ defined by the rule � 7! m(�) is a homomorphism. Show that this
homomorphism is injective. Thus G is isomorphic to a subgroup of (Z/nZ)⇥, and so [E : F ] divides �(n),
and G is abelian.

6. Let µ0
n be the set of primitive nth roots of unity. Show that �F (n)

def
=

Q
↵2µ0

n
(X�↵) is a polynomial

in F [x] of degree �(n), and that the minimal polynomial of ⇣n divides �F (n). Show that �F (n) does
not depend on the choice of splitting field E of Xn � 1. When we write �(n), we mean �Q(n).

7. Show thatXn�1 =
Q

d|n �F (d) in F [X]. Use this recursion to show that if F is any field containing Q,
then �F (n) = �(n) and so �F (n) 2 Q[X]. Use this recursion to calculate as many �(n) as you have
patience for.

8. Use Gauss’s lemma or the idea of integral elements to show that �(n) is monic with coe�cients
in Z[X]. If F has characteristic p, use the above recursion to show that �F (n) is just the polynomial
obtained by taking the �(n) 2 Z[x] and reducing the coe�cients mod p.

9. Suppose F = Q, and f 2 Q[X] is the minimal (monic) polynomial of ⇣n. Observe that f is a
primitive polynomial of Z[X]. Show that if g 2 Z[X] has root ⇣n, then g is a multiple of f in Z[X].
Use the evaluation map Z[X] ! Z[⇣n] to show that Z[⇣n] is isomorphic to Z[X]/ hfi. Hint: factor g

in Z[X]. Since this gives a factorization in Q[X], f must be a Q[X]-associate to a primitive irreducible
polynomial factor h of g. What does that say about f versus h?
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Problem 1–4. The pth reduction map. (Let E be the nth cyclotomic extension of Q, and let µn be
the nth roots of unity. Let ⇣n be a fixed generator of the cyclic group µn, and let f 2 Q[X] be the
(monic) minimal polynomial of ⇣n. Let p be a prime not dividing n, and let E be the nth cyclotomic
extension of Fp. Let µn be the nth roots of unity in E. Let ⇡ : Z ! Fp be the reduction homomorphism.
Recall that ⇡ extends to a homomorphism ⇡X : Z[X] ! Fp[X] which takes a polynomial and reduces its
coe�cents modulo p.)

1. Show that �(n) = fg for some monic g 2 Q[X], and use Gauss’s lemma or integrality to show that,
in fact, f, g 2 Z[X]. Show that �Fp(n) = fg where f = ⇡Xf and g = ⇡Xg. Let ⇣n be a choice of root

of f in E. Show that ⇣n is a primitive nth root of unity in µn.

2. Let ⇣n be as above, and consider the homomorphism Z[X] ! Fp

⇥
⇣n

⇤
obtained by composing the

homomorphism ⇡X : Z[X] ! Fp[X] with the evaluation map Fp[X] ! Fp

⇥
⇣n

⇤
sending X to ⇣n. Show

that this composition has a kernel containing f , so we have a map Z[X]/ hfi ! Fp

⇥
⇣n

⇤
sending X to ⇣n.

Recall from GT 9.9 that Z[⇣n] is isomorphic to Z[X]/ hfi. Use this to construct a homomorphism

Z[⇣n] ! Fp

⇥
⇣n

⇤

with ⇣n 7! ⇣n. Call this map the p reduction map. If ↵ 2 Z[⇣n] then we write ↵ for its image in Fp

⇥
⇣n

⇤
.

3. Show that this pth reduction map induces an isomorphism µn ! µn. Show that this isomorphism
restricts to give a bijection between roots of f and roots of f .

4. Suppose ↵ 2 µn is a root of f and so, by Problem 3, ↵ is a root of f . Show that ↵p is a root of f .
Conclude that ↵p is a root of f . Hint: use the pth Frobenius automorphism x 7! x

p.

Problems 5–7. Irreduciblility of the Cyclotomic Polynomial. (Let E be the nth cyclotomic extension
of Q. Let ⇣n 2 E be a fixed primitive nth root of unity with minimal polynomial f over Q.)

5. Show that if ↵ 2 E is any root of f , and k is any positive integer prime to n, then ↵

k is a root of f .
Hint: use Problem 4.

6. Show that every primitive nth root of unity is a root of f . Show that f = �(n). Prove the following
theorem and corollaries.

Theorem. The nth cyclotomic polynomial �(n) is irreducible in Q[X].

Corollary 1. The nth cyclotomic extension E of Q is Galois over Q with Galois group isomorphic
to (Z/nZ)⇥. Hence [E : Q] = �(n).

Corollary 2. Suppose E is the qth cyclotomic extension of Q where q is a prime. If L is a field
intermediate between Q and E, then [L : Q] divides q� 1. For every divisor d of q� 1 there is a unique
intermediate extension Ld with [Ld : Q] = d. The field Ld is Galois over Q with Galois group cyclic of
order d. For such divisors d, d

0, the field Ld is contained in Ld0 if and only if d|d0.

7. Suppose that q is an odd prime. Show that the qth cyclotomic extension of Q contains a unique
quadratic (degree 2) extension L of Q. Our next goal will be to describe this quadratic extension.

Problem 8–9. Quadratic extensions and square roots. (Let E be a quadratic (degree 2) extension of a
field F . Assume that the characteristic of F is not 2)

8. Show that E is Galois over F . If � 6= id in the Galois group, and � 2 E then �� is written �.

9. Suppose � 2 E not in F . Let � = � � �. Show that � = ��. Conclude that the minimal polynomial
of � is (X � �)(X + �) = X

2 � �

2. In particular d = �

2 2 F , and E = F [�]. We write � as
p
d (although,

really d has two square roots in E, which di↵er by a sign), and E as F [
p
d]. Show that a+ b

p
d = a�b

p
d

for any a, b 2 F . If F = Q show further that E = F [
p
d ] where d can be chosen to be a square-free

integer d 6= 1, and such d is unique (those with d > 0 are called real quadratic fields and those with d < 0
are called imaginary quadratic fields).
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Generators of quadratic subfields. (Let E be a finite Galois extension of F where F is a field of char-

acteristic not equal to 2. Suppose G is the Galois group, and suppose H is a subgroup of index 2 in G.

So EH
is a quadratic extension of F .)

1. We wish to build on the idea of GT 10.9 to find a d 2 F such that EH = F [
p
d ]. We assume we

have elements of E (such as generators). But to use GT 10.9 we need to find a � in the subfield EH .
We start with the idea of averaging. If ↵ 2 E then consider the average of its H-conjugates

1

|H|
X

�2H

�↵.

Since dividing by |H| creates problems in finite characteristic, we just consider � =
P

�2H �↵. Show
that � 2 EH . (Note: this “trace” idea works for any subgroup of H, not just index 2 subgroups).

2. Let ↵,� be as above. Since EH is quadratic, we have a conjugate � 2 EH . Show that � is ⌧�
where ⌧ 2 G is any element not in H. Show that

� = ⌧
X

�2H

�↵ =
X

�2H

⌧�↵ =
X

�2⌧H

�↵ =
X

� 62H

�↵.

As in GT 10.9, we wish to consider � = � � �, which satisfies � = ��. Observe that

� = � � � =
X

�2H

�↵�
X

� 62H

�↵ =
X

�2G

�(�)�↵

where � : G ! {±1} is as defined as follows. (Note: in our sums, think of ±1 as elements of F ).

Definition. The quadratic character � : G ! {±1} associated to H is the map defined by the
rule �(�) = 1 if � 2 H and �(�) = �1 if � 62 H.

3. Show that the quadratic character � is a surjective group homomorphism.

4. If � 6= 0, then � has minimal polynomial X2 � d where d = �2. Show (whether or not � = 0) that

d =
X

�,⌧2G

�(�⌧)(�↵)(⌧↵).

Conclude that if d 6= 0 then EH = F [
p
d ].

5. Specialize to the situation where F = Q, where E is the qth cyclotomic extension of Q for q an odd
prime, and where ↵ = ⇣ is a primitive qth root of unity. Identify the Galois group G with (Z/qZ)⇥.
Show that the unique subgroup H of index two is the set of squares in (Z/qZ)⇥ (the set of quadratic
residues). Under this identification with G show that

d =
X

�,⌧2G

�(�⌧)(�⇣)(⌧⇣) =
X

k,l2(Z/qZ)⇥

✓
kl

q

◆
⇣k⇣l =

X

k,l2(Z/qZ)⇥

✓
kl

q

◆
⇣k+l.

Here
⇣

a
q

⌘
is the Legendre symbol: it is +1 if a is a nonzero square mod q and �1 if a is not a square

mod q. Now prove the following lemma (later we will calculate d and find that it is not zero):

Lemma. Let E be the qth cyclotomic extension of Q where q is an odd prime. Let ⇣ be a primitive qth
root of unity. Let

d
def
=

X

k,l2(Z/qZ)⇥

✓
kl

q

◆
⇣k+l.

Then d is in Q. Furthermore, if d 6= 0 then Q[
p
d] is the unique quadratic extension of Q contained

in E.
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Problems 1–3. The quadratic subfield of Q[⇣q]. (Let E be the qth cyclotomic extension of Q where q is

an odd prime. Let ⇣ = ⇣q in E be a primitive q root of unity.)

1. Our goal is to calculate the following d, known to be an element of Q:

d =
X

k,l2(Z/qZ)⇥

✓
kl

q

◆
⇣k+l =

q�1X

m=0

Am⇣m where Am =
X

k 6=m

✓
k(m� k)

q

◆
.

In the formula for Am, the terms vary over k 2 (Z/qZ)⇥ with k 6= m in Z/qZ. Justify the formula
for Am, and show that

A0 =
X

k2(Z/qZ)⇥

✓
�k2

q

◆
=

X

k2(Z/qZ)⇥

✓
�1

q

◆
= (q � 1)

✓
�1

q

◆
.

2. Now assume m 6= 0. Show that for each k 2 (Z/qZ)⇥ with k 6= m there is a unique r 2 (Z/qZ)⇥
such that m� k = rk. Show that this yields every r except r = �1. Conclude that

Am =
X

k 6=m

✓
k(m� k)

q

◆
=

X

r 6=�1

✓
k2r

q

◆
=

X

r 6=�1

✓
r

q

◆
= �

✓
�1

q

◆
+

q�1X

r=1

✓
r

q

◆
= �

✓
�1

q

◆
.

3. What is the qth cyclotomic polynomial �(q)? Use the fact that ⇣ is a root of �(q) to show that

⇣ + ⇣2 + . . .+ ⇣q�1 = �1.

Show that d =
⇣

�1
q

⌘
q. Conclude the following:

Theorem. Let E be the qth cyclotomic extension of Q where q is an odd prime. Define ⇤q =
⇣

�1
q

⌘
q.

Then Q
⇥p⇤q

⇤
is the unique quadratic extension of Q contained in E. Furthermore,

p⇤q is in the

ring Z[⇣] where ⇣ is a primitive qth root of unity.

Problems 4–8. Proof of Quadratic Reciprocity. (Let E be the qth cyclotomic extension where q is an

odd prime, and let p 6= q be another odd prime. Let ⇣ be a primitive qth root of unity. Let G be the

Galois group of E over Q which we identify with (Z/qZ)⇥. Let H be the subgroup of index 2 which

we identify with the squares or quadratic residues. Let ↵ 7! ↵ be the pth reduction map Z[⇣] ! Fp

⇥
⇣
⇤

defined in GT 10.)

4. The element �p 2 G that is identified with p 2 (Z/qZ)⇥ is called the pth Frobenius element. It has
the property that �p(↵) = ↵p for all roots of unity ↵ 2 µq. Of course �p(↵) = ↵p does not hold for
all ↵ 2 E. However, show that if ↵ 2 Z[⇣] then �p↵ = ↵p.

5. Observe that �p 2 H if and only if p is a square mod q. Show that if ↵ 2 Z[⇣] is in EH and p is a
square mod q then ↵ 2 Fp. Conclude that if p is a square mod q, then ⇤q is a square mod p.

6. Show that if p is not a square mod q then �p
p⇤q = �p⇤q. Show that

p⇤q is not in Fp. Conclude
that ⇤q is not a square mod p.

7. Show the following equation between Legendre symbols.
✓
p

q

◆
=

✓
⇤q
p

◆
.

8. Show that �1 is a square mod q if and only if q ⌘ 1 mod 4. Use this to prove the following.

Theorem (Quadratic reciprocity). Let p and q be distinct odd primes. Then

✓
p

q

◆
= (�1)(p�1)(q�1)/4

✓
q

p

◆
.
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Ruler and compass constructions.

Definition 1. Let F be a subfield of R. A point (a, b) of R2 is called F -rational if a, b 2 F . A line
of R2 is said to be generated by two distinct points (a, b) and (c, d) if it contains the two points. A
circle of R2 is said to be generated by (a, b), (c, d) and (e, f) if has center (a, b) and radius equal to the
distance from (c, d) to (e, f). (Here we assume that (c, d) and (e, f) are distinct).

Definition 2. Let S be a set of points of R2. Let RC

1(S) be the set consisting of S together with any
point (a, b) which is the point of intersection of (distinct) curves C1 and C2 where Ci is either a line
generated by two points of S or a circle generated by three points of S.

Let RC

2(S) be RC

1(RC

1(S)), let RC

n+1 = RC

1(RC

n(S)). Let RC(S) be the union of the
sets RC

n(S).

Definition 3. A point is said to be constructible if it is in RC(S) where S is the set {(0, 0), (1, 0)}. A line
generated by constructible points is said to be a constructible line. A circle generated by constructible
points is said to be a constructible circle. Let E be the set of all a 2 R that occur as a coordinate of a
constructible point.

Problems 1–4. Quadratic towers associated to constructible points. (Let F be a subfield of R.)

1. Show that a line can be generated by two F -rational points if and only if it is the solution set
of ax+ by + c = 0 with a, b, c 2 F and with a and b not both zero. Suppose `1 and `2 are two distinct
nonparallel lines, each generated by F -rational points. Show that the intersection of `1 and `2 is F -
rational. Show that if a circle can be generated by three F -rational points, then it is the solution set of
an equation of the form x

2 + y

2 + ax+ by + c = 0 where a, b, c 2 F .

2. Suppose that a, b, c, a

0
, b

0
, c

0 2 F . Suppose a, b are not both zero. Show that there is a quadratic
extension E ✓ R of F such that all x, y 2 R with

ax+ by + c = 0 x

2 + y

2 + a

0
x+ b

0
y + c

0 = 0

have the property that x, y 2 E.
Suppose that a, b, c, a0, b0, c0 2 F where (a, b, c) 6= (a0, b0, c0). Suppose x, y 2 R are such that both

x

2 + y

2 + a

0
x+ by + c = 0, and x

2 + y

2 + a

0
x+ b

0
y + c

0 = 0.

Show that (a�a

0)x+(b� b

0)y = (c� c

0) also holds, and that either a�a

0 or b� b

0 is not zero. Conclude,
as above, that there is a quadratic extension E ✓ R of F such that x, y 2 E.

3. Prove the following proposition and corollary.

Proposition. If (a, b) is constructible, then then there is a sequence Fi of subfields of R such that

Q = F0 ( F1 ( . . . ( Fn�1 ( Fn,

such that each [Fi+1 : Fi] = 2, and such that a, b 2 Fn.

Corollary. If a 2 E then a is algebraic and [Q[a] : Q] is a power of two.

4. Show that ⇡1/2 and 21/3 are not in E. Explain why it is impossible to duplicate the cube or square
the circle. (The problem of duplicating the unit cube, say, is to find two points P and Q such that PQ

has length a, where a is the length of the side of a cube with volume 2. The problem of squaring the
unit circle, say, is to find P and Q such that PQ has length a, where a is the length of the side of a
square with area equal to that of the unit circle.)
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Problems 1–9. The fields E and E[i].

1. Let P and Q be constructible points. Show that the perpendicular bisector to the segment PQ is
constructible. Conclude that the midpoint of the segment PQ is constructible.

2. Assume that P is a constructible point and that ` is a constructible line. Show that the line
perpendicular to ` containing P is constructible. Do two cases (i) P 2 ` and (ii) P 62 `.

3. Show that the x and y-axes are constructible lines. Show that if (a, b) is constructible then so
are (a, 0), (0, b) and (b, 0). Show that (a, b) is constructible if and only if a, b 2 E.

4. Show that if a, b 2 E then so are a+ b and �a. Conclude that E is an additive subgroup of R.

5. Suppose that a, b 2 E with a 6= 0. Show that (b, ab) and (1/a, 1) are constructible. Conclude that E
is an intermediate field between Q and R. Hint: consider the line generated by (0, 0) and (1, a), and its
intersection with x = b and y = 1.

6. Show that if a > 0 is in E then a

1/2 2 E. Conclude that the field E is closed under square roots of
nonnegative elements. Hint: look at the circle with center (0, 0) and containing

�
0, (a + 1)/2

�
. Where

does this circle intersect the line x = (a� 1)/2?

7. Show that (a, b) is constructible if and only if a+bi 2 E[i]. So we can think of E[i] as the subfield of C
consisting of constructible points. In other words, complex numbers representing constructible points
forms a subfield of C.

8. Show that if ↵ 2 E[i] then ±↵

1/2 2 E[i]. Hint: you may need to bisect an angle.

9. Prove the following. Hint: use the proposition of GT 13.

Theorem. Suppose ↵ = a+ bi 2 C where a, b 2 R. Then (a, b) is constructible if and only if there is a

sequence of subfields of C
Q = F0 ( F1 ( . . . ( Fn�1 ( Fn,

such that each [Fi+1 : Fi] = 2, and such that ↵ 2 Fn.

Corollary. If ↵ 2 E[i] then ↵ is algebraic and the degree [Q[↵] : Q] is a power of two.

Problems 10–13. Polygons and trisections.

10. Show that a primitive nth root of unity ⇣n is in E[i] if and only if �(n) is a power of 2. Conclude
that the pentagon and the 17-gon are constructible (the first was known to the ancients, and the last is
a result of Gauss). Hint: use the first corollary of GT 10. Show that if an Abelian group has order a
power of two, then it has a (normal) subgroup of order 2. (When we say that an n-gon is “constructible”
we mean that the all the vertices of some regular n-gon are constructible.)

11. Show that an n-gon is constructible if and only if ⇣n 2 E[i]. Hint: Suppose you have constructed a
regular n-gon. From the vertices you can construct the center. You can subtract all the vertices by the
center and divide a pair of resulting vertices to obtain a primitive nth root of unity.

12. Show that there are constructible angles whose trisection is not constructible. Conclude that not
all angles can be trisected with ruler and compass. Hint: consider a primitive 6th root of unity and a
primitive 18th root of unity. (An angle is constructible means that the vertex and at least one point on
each side is constructible).

13. Identify n such that �(n) is a power of two. Do so in terms of powers of two and Fermat primes
(primes of the form 2n + 1). Note: this requires some basic knowledge of the Euler phi function.
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Galois theory of finite fields.

Fact. Every finite field has characteristic p for some prime p, and has a subfield canonically isomorphic

to Fp. So we regard every finite field of characteristic p as a finite extension of Fp.

1. Show that if F is a field with q elements, then every element of F

⇥
is a root of X

q�1 � 1. Show that

every element of F is a root of X

q �X. Factor X

q �X in F [X].

2. Let F be a finite field with q elements, and let E be a finite extension of degree n. Show that E

has q

n
elements. Show that E is the splitting field of X

qn �X over F . Conclude that E is Galois over F

with a Galois group of size n.

3. Conclude from the above that if E is a finite field of characteristic p, then |E| is pn for some n, and E

is Galois over Fp. Furthermore x

pn

= x for all x 2 E.

Definition. Suppose that F is a field of characteristic p. Let q be a power of p. Then the qth power

Frobenius map Frq : F ! F is the function x 7! x

q
.

4. Let F be a field of characteristic p > 0, and let q be a power of p. Show that Frq is an automorphism

of F . Show that (Frq)
k
= Frqk in the automorphism group of F . Show that at most q elements of F

are fixed by Frq, and these element form a subfield of F .

5. Prove the following theorem and corollary.

Theorem. Let F be a finite field with q elements, and let E be a finite extension of degree n. Then E

is Galois over F , and Frq is an element of Gal(E/F ). Further, Gal(E/F ) is cyclic of order n with

generator Frq.

Corollary. Let F be a finite field with q elements and let E be a degree n extension. For all positive

divisors k of n there is a unique field Lk intermediate between F and E of size q

k
.

6. Let F be a finite field with q elements. For each n � 1, let En be the splitting field of f = X

qn �X

over F . Show that f

0
= �1 and that the extension E has at least q

n
elements. Consider the Frobenius

automorphism Frqn of En, and let E

0
be the elements fixed by Frqn . Show that E

0
is a subfield

containing F and that E

0
is the set of roots of X

qn �X in En. Conclude that En = E

0
, and that E has

exactly q

n
elements, and conclude the following:

Theorem. Let F be a field with q elements. For each n � 1 there is an extension of F of degree n.

This extension is the splitting field of X

qn � X over F , and is unique up to isomorphism (and the

isomorphisms can be required to fix F ).

Corollary. Let p

n
be a power of a prime. There is a field with p

n
elements, and any two such fields

are isomorphic.

7. Prove the following:

Theorem. Let E be an algebraic closure of Fp. For each power p

n
, there is a unique subfield of E of

order p

n
. These are all the finite subfields of E. If L1, L2 are finite subfields of E then L1 ✓ L2 if and

only if |L2| is a power of |L1|.

8. Let p be a prime. Show that E is a field with p

n
elements if and only if it is a p

n � 1 cyclotomic

extension of Fp. Let |E| = p

n
. Show that every root of the cyclotomic polynomial �Fp(p

n�1) generates

the group E

⇥
. Show that �Fp(p

n� 1) factors in Fp[X] into irreducible factors of degree n, and that if ↵

is a root of any one of these, then E = Fp[↵].
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Problems 1–5. The fundamental theorem of algebra. (We will use four facts from outside Galois theory.
Two are from analysis, and two are from finite group theory. Fact 1 follows from the intermediate value
theorem. The geometric description of multiplication in C then yields Fact 2. Problem 8 gives another
argument for Fact 2. Fact 3 is a standard result of group theory called the first Sylow theorem. Fact 4
is also a standard fact in group theory, and so can be taken as given; however, a short proof is outlined
in Problem 3.)

Fact 1. Every polynomial f 2 R[X] of odd degree has a real root. If a > 0 then x2 = a has solutions
in R.

Fact 2. If a 2 C then x2 = a has a solution in C.

Fact 3. Let G be a finite group, p a prime, and pn the largest power of p dividing |G|. Then G has a
subgroup of order pn (called a p-Sylow subgroup).

Fact 4. Let G be a group of order 2n, n � 1. Then G has a subgroup of index 2.

1. Show that there are no finite extensions of R of odd degree greater than 1. Show that there are no
extensions of C of degree two.

2. Let E be a finite Galois extension of R with Galois group G. Show that |G| is a power of 2. Hint:
look at [EH : R] where H is a 2-Sylow subgroup of G.

3. (Optional) Prove fact 4. Hint: induction on n. The center of G is non-trivial (look at orbits under
conjugation). Show that the center has an element � of order 2. Use the group G/ h�i.

4. Show that C has no proper finite extensions. Then prove the following theorem. Hint: let E be a
Galois extension of R containing the given extension of C. Use Fact 4 on Gal(E/C).

Theorem (Fundamental theorem of algebra). The field C is algebraically closed. The field C is an
algebraic closure of R. All irreducible polynomials in R[x] are either linear, or quadratic with distinct
conjugate roots in C.

Problems 5–9 (Optional). A general form of the fundamental theorem of algebra. (Let R be a real closed
field as defined below. Let C be the splitting field of X2 + 1 over R. Let i be a root of X2 + 1 in C,
so C = R[i]. If a, b 2 R, then define the norm of ↵ = a+ bi 2 C to be ↵↵ = a2 + b2. )

Definition. Let R be an ordered field. We say that R is a real closed field if (i) every odd degree
polynomial f 2 R[X] has a root in R. and (ii) every positive element has a square root in R.

5. Recall that an ordered field L has characteristic zero, that 1 2 L is positive, and that the square of
any element of L is nonnegative. Conclude that X2 + 1 is irreducible in L[X].

6. If a, b 2 R, show that the norm of a + bi is nonnegative, and zero only if a = b = 0. Show that the
norm is a multiplicative map C ! R.

7. Suppose u = a+ bi has norm 1 and b � 0. Show that �1  a  1. Derive, or at least verify, that

r
1 + a

2
+ i

r
1� a

2

yields a formula for a square root of u. (Where the square roots are taken as nonnegative roots in R).
Hint: to derive the formula, start with the fact that the square root must also have norm 1.

8. Show that every element of C has a square root in C.

9. Generalize the fundamental theorem of algebra to C and R using Problems 1, 2, and 4 as a model.


