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This document covers some basic results about Noetherian modules and Noethe-
rian rings. An earlier version of this document was written as a worksheet for my
Math 520 course in Fall 2010 where many of the proofs were left as exercises. This
version continues the policy of leaving many of the proofs to the reader.

1 Required background

This document is written for readers with some basic familiarity with rings, ideals,
and modules. For example, the reader should be familiar with the idea that every
ring R is an R-module, and that an ideal in a commutative ring is just a submodule
of R.

The reader should be familiar with quotients M/N where M is an R-module
with submodule N . Similarly, the reader should be familiar with quotient rings R/I
where R is a commutative ring and I is an ideal.

In a few places we refer to Euclidean domains and PIDs. We accept as proved
that any Euclidean domain is a PID, and that Z is a Euclidean domain. We also
assume the reader is familiar with polynomials rings R[X1, . . . , Xn] with coefficients
in a ring R.

2 Definitions and Consequences

Throughout this document, R is assumed to be a commutative ring with unity.
Many of the results generalize to noncommutative rings, but the commutative case
covers most applications.

Definition 1. An R module M is said to be Noetherian if the ascending chain
condition (ACC) holds for submodules of M . The ACC is the condition that
every ascending chain of submodules eventually stabilizes. In other words, given a
countable ascending chain of submodules

M1 ⊆M2 ⊆M3 ⊆ . . .

there is an m such that

Mm = Mm+1 = Mm+2 = . . . .

∗Copyright c© 2019 by Wayne Aitken. This work is made available under a Creative Commons
Attribution 4.0 License. Readers may copy and redistributed this work under the terms of this
license.
†Version of November 22, 2019 (with minor corrections).

1



Exercise 1. There is a minor variant of the ascending chain condition that is
equivalent to the above version. Since it is equivalent, it can also be referred to as
the ACC. Prove that M is Noetherian according to the above definition if and only
if the following ACC condition holds: every ascending chain

M1 ⊆M2 ⊆M3 ⊆ . . .

has only a finite number of proper inclusions. A proper inclusion of the chain occurs
at index i > 1 if Mi 6= Mi−1.

Exercise 2. There is another popular variant of the ascending chain condition that
is equivalent to the above version. Since it is equivalent, it can also be referred to as
the ACC. Prove that M is Noetherian according to the above definition if and only
if the following version of the ACC holds: there is no infinite properly ascending
chain:

M1 ( M2 ( M3 ( . . .

Exercise 3. Prove the following proposition.

Proposition 1. Suppose M is a Noetherian module, and suppose S is a nonempty
collection of submodules of M . Then S contains a maximal element. In other
words, there is a submodule N ∈ S such that N ( N ′ fails for all N ′ ∈ S.

Exercise 4 (Optional). In the above discussion of the ACC we work with the col-
lection C of submodules of the module M . We used a partial order on C, namely ⊆.

Formulate the three versions of the ACC in terms of an abstract collection C with
a partial order � (in other words, � is reflexive, transitive, and has the property
that x � y and y � x together implies x = y for all x, y ∈ C). Show that the three
versions of ACC are equivalent. Show that they are equivalent to requirement that
every nonempty subset S of C has a maximal element (as in Proposition 1).1

Show that if C and � statisfy the ACC, then any subset of C must as well (where,
naturally, we restrict the partial order � to the subset).

Exercise 5. Show that every submodule of a Noetherian module is also Noetherian.

The definition of Noetherian in terms of the ACC is fairly common, but some
prefer to define Noetherian in terms of every submodule being finitely generated.
The following shows that both approaches are equivalent.

Theorem 2. Let M be an R-module. Then M is Noetherian if and only if every
submodule of M is finitely generated.

Exercise 6. Prove the above theorem. Hint: for one direction you will need the
fact that the union of any ascending chain of submodules is a submodule.

Now we come to the key concept of Noetherian ring, which we define in terms
of modules.

1This is already abstract enough, but we can go further since we do not really need all of the
properties of a partial order.
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Definition 2. The ring R is said to be a Noetherian ring if M = R is Noetherian
as an R-module.

Exercise 7. Show that a ring R is Noetherian if and only if the ACC holds for
ideals of R.

Exercise 8. Show that a ring R is Noetherian if and only if every ideal of R is
finitely generated.

Exercise 9. Show that every field is a Noetherian ring. Show that Z is a Noetherian
ring. Show that every Euclidean domain is a Noetherian ring.

Exercise 10. Show that if R is Noetherian, then any ring isomorphic to R is
Noetherian. Show a similar fact for Noetherian modules.

3 Examples of Noetherian Rings and Modules

Commutative algebra is the area of abstract algebra that studies commutative rings.
Actually commutative algebra is largely the study of commutative Noetherian rings
since most commutative rings of interest in commutative algebra are Noetherian.
For example, all PIDs are Noetherian since every ideal of a PID is finitely generated:
in fact generated by one element. However, many more rings are Noetherian. The
following famous theorem gives an example of how one can form new Noetherian
rings from existing Noetherian rings. We will not give the proof here.2

Theorem 3 (Hilbert Basis Theorem). If R is a Noetherian ring, then R[X] is also
Noetherian where R[X] is the ring of polynomials with coefficients in R and with
symbolic variable X.

Corollary 4. If F is a field, then F [X1, . . . , Xn] is Noetherian. In general, if R is
Noetherian then so is R[X1, . . . , Xn].

Exercise 11. Prove the above corollary. Hint: use the fact that R[X,Y ] is iso-
morphic to R′[Y ] where R′ = R[X].

Exercise 12. Show that if R is Noetherian, and if I is an ideal of R then the
quotient ring R/I is a Noetherian ring.

Exercise 13. Show that if M is a Noetherian R module, and if N is a submodule
of M , then M/N is a Noetherian R-module.

Exercise 14. As we showed before, any submodule of a Noetherian module is
a Noetherian R-module. Conclude that any ideal of a Noetherian ring R is a
Noetherian R-module.

Exercise 15. Suppose that f : M1 →M2 is a homomorphism between R-modules.
Suppose that f has finitely generated kernel, and finitely generated image. Show
that M1 is finitely generated.

2Perhaps I will add a proof in a future version.
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Exercise 16. Consider the natural homomorphism M1 ×M2 → M2. Show that
the image is M2 and that the kernel is isomorphic to M1. Conclude that if M1

and M2 are finitely generated, then so is M1 ×M2.

Exercise 17. Suppose M1 and M2 are Noetherian R-modules. Show that M1×M2

is a Noetherian R-module. Hint: If N is a submodule of M1 ×M2, then consider
the restriction of the homomorphism M1×M2 →M2 to the subset N of M1×M2.
Show that the image and kernel of this restriction are both finitely generated.

Exercise 18. Suppose R is a Noetherian ring. Show that M = Rn is a Noetherian
module for all n ∈ N. (For the case n = 0, define R0 to be the zero module {0}).

Exercise 19. Suppose that f : M1 →M2 is a homomorphism between R-modules.
Suppose that f has Noetherian kernel and Noetherian image. Show that M1 is
Noetherian.

4 A theorem for generated modules

Exercise 20. Show that if M is a Noetherian R-module, and if f : M → N is
an R-module homomorphism, then the image of f is also Noetherian. (Hint: use
the first isomorphism theorem, and a previous result.)

Theorem 5. Suppose R is a Noetherian ring. Then an R-module M is Noetherian
if and only if it is finitely generated.

Proof. One direction follows from Theorem 2. For the other direction, suppose
that M = 〈u1, . . . , un〉. Then the function (r1, . . . , rn) 7→ r1u1 + . . . + rnun is a
homomorphism Rn →M . The result follows.

Exercise 21. Fill in the details of the above proof.

5 Factorization in Noetherian integral domains

Let R be an integral domain. An irreducible element of R is an element x that is
not zero or a unit but has the property that for all y, z ∈ R, the equation x = yz
implies y or z is a unit. Irreducible elements play the role in a general integral
domain that prime numbers play in Z. It turns out that when R is Noetherian, we
get factorization into irreducible elements (but perhaps not unique factorization).

Theorem 6. Let R be a Noetherian integral domain. Then every nonzero x ∈ R
can be factored as

x = up1 · · · pk
where u is a unit in R and where each pi is irreducible. (We allow k = 0 in case x
is itself a unit).

4



Proof. We will appeal to the ACC condition for ideals.3

Suppose x1 = x does not so factor. Then x1 cannot be a unit, nor can it be an
irreducible element. Thus x1 = yz for some non-units y, z ∈ R. Either y or z must
fail to have the desired factorization. Let x2 be either y or z so that x2 fails to have
the desired factorization. Continue in this way and produce an infinite chain

〈x1〉 ( 〈x2〉 ( 〈x3〉 ( · · ·

Such a chain cannot exist.

Exercise 22. Verify the proof and fill in any details.

3Actually, we only need the ACC for principal ideals, so the theorem does generalize a bit.
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