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If R is a commutative ring with unity, and if S is a subset of R closed under
multiplication, we can form a ring S−1R of fractions where the numerators are
in R and the denominators are in S. This construction is surprisingly useful. In
fact, Atiyah-MacDonald, says the following:1 “The formation of rings of fractions
and the associated process of localization are perhaps the most important technical
tools in commutative algebra. They correspond in the algebro-geometric picture to
concentrating attention on an open set or near a point, and the importance of these
notions should be self-evident.”

Many of the applications of this technique involve integral domains, and this
situation is conceptually simpler. For example, if R is an integral domain then the
localization S−1R is a subring of the field of fractions of R, and R is a subring
of S−1R. In an effort to make this a gentle first introduction to localization, I have
limited myself here to this simpler situation. More specifically:

• We will consider the localization S−1R in the case where R is an integral
domain, and S is a multiplicative system not containing 0.

• We will consider ideals I of R, and construct their localizations S−1I as ideals
of S−1R.

• More generally, for the interested reader we will consider R-modules, but only
those that are R-submodules of the field of fractions K of R. For such R-
modules M we will construct S−1M which will be S−1R-submodules of K.

(Localization of more general rings and modules, and their universal properties,
will be considered in a separate essay.)

This is intended as an introduction, but nevertheless my philosophy is that, at
this level of mathematics, straightforward proofs are best worked out by the reader.
So I have only included proofs for results that do not admit a straightforward proof,
and often the proofs that are provided are just hints to allow the reader to work
out a full proof. Even when a proof is provided, I encourage the reader to attempt
a proof first before looking at the provided proof.

∗Copyright c© 2019 by Wayne Aitken. This work is made available under a Creative Commons
Attribution 4.0 License. Readers may copy and redistributed this work under the terms of this
license.
†Version of November 10, 2019.
1In their classic Introduction to Commutative Algebra (1969), by M. F. Atiyah and I. G.

MacDonald. This quote is in the introduction to Chapter 3, a chapter devoted to localization
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1 Required background

This document is written for readers with some basic familiarity with rings, integral
domains, fields, ideals, and modules. This includes familiarity with quotients R/I
of rings by ideals. I assume the reader is familiar with the existence of the field of
fraction of an integral domain.

I assume familiarity with principal, prime, and maximal ideals, as well as the
notion of the ideal (or submodule) generated by a given set. For example, the
reader should be familiar with the fact that every proper ideal is contained in a
maximal ideal, or that R/m is a field if R is a commutative ring with maximal
ideal m. I also assume the reader is familiar with the addition and multiplication
operations for ideals. We will use the notation aR or Ra for the principal ideal
generated by a (this is sometimes written 〈a〉). Similarly, a1R + . . . + akR is the
ideal (or submodule) generated by a1, . . . , ak (sometimes written 〈a1, . . . , ak〉).

Knowledge of R-modules, as opposed to the simpler case of ideals, is somewhat
optional. This is provided here to provide support materials for the study of so-
called “fractional ideals” in Dedekind Domains and similar rings. So the reader can
skip the parts of the document that deal with modules in a first reading. In any
case, the only modules we consider are submodules of the field of fractions. (Recall
that R is trivially an R-module, and that a R-submodule of R is just an ideal.)

In a few places we assume that the reader is familiar with Noetherian rings
(Corollary 13 and then at the end of Section 9). This material can be skipped in a
first reading if the reader is unfamiliar with such rings.

Section 9 concerns integrally closed integral domains and Dedekind domains.
This section may seem unmotivated if the reader has not studied these concepts
before, but at least everything needed about these concepts is given there. In any
case, this section can be skipped in a first reading.

2 The basic constructions

Here we provide the main definitions, and some consequences.

Definition 1. A subset S of an integral domain R is said to be a multiplicative
system if (1) 1 ∈ S, (2) 0 6∈ S, and (3) S is closed under multiplication. (In other
words, S is a multiplicative submonoid of R− {0}).

Remark. We really do not need 1 ∈ S; just requiring S be nonempty is enough.
But it is more comfortable somehow to have 1 ∈ S, and adding 1 to S will not
change the resulting ring. It is a harmless requirement.

Definition 2. Let S be a multiplicative system of an integral domain R. Let K
be the field of fractions of R. Then S−1R is defined to be the set of all elements
of K that can be written in the form r/s with r ∈ R and s ∈ S. We call S−1R the
localization of R with respect to S.

Proposition 1. Let R be an integral domain with field of fractions K, and let S be
a multiplicative system of R. Then S−1R is a subring of K. In particular, S−1R
is an integral domain with subring R.
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Example 1. If a ∈ R is nonzero then

S = {an | n ∈ N}

is a multiplicative system.2 Similarly, if a1, . . . , ak ∈ R are nonzero, then

S = {an1
1 · · · a

nk

k | ni ∈ N}

is a multiplicative system.

Example 2. Suppose p is a prime ideal of R, Then S = R r p is a multiplicative
system. In this case S−1R is written Rp, and is called the localization at p.

Example 3. Since R is an integral domain, S = Rr {0} is a multiplicative system.
In this case S−1R is the field of fractions.

Definition 3. Let S be a multiplicative system of an integral domain R, and let I
be an ideal of R. Then S−1I is defined to be the set of elements of S−1R that can
be written in the form a/s with a ∈ I and s ∈ S.

Proposition 2. Let R be an integral domain with field of fractions K. Let S be
a multiplicative system of R, and let I be an ideal of R. Then S−1I is an ideal
of S−1R. The ideal S−1I is a proper ideal if and only if I is disjoint from S.

Proof. Recall that an ideal J of a ring is a proper ideal if and only if 1 6∈ J .

Here is a simple generalization that is sometimes needed (for example, in the
theory of so-called “fractional ideals”):

Definition 4. Let R be an integral domain and let K be the field of fractions
of R. Recall that K is an R-module. Let M be an R-submodule of K. If S is a
multiplicative system of R, then S−1M is defined to be the set of elements of K
that can be written in the form s−1x with x ∈M and s ∈ S.

Proposition 3. Let R be an integral domain and let K be the field of fractions of R.
If S is a multiplicative system of R and if M is an R-submodule of K then S−1M
is an S−1R-submodule of K.

Remark. Let R be an integral domain with field of fractions K. Let S be a multi-
plicative system of R, and let I be an ideal of R or more generally an R-submodule
of K. Then observe that S−1I is just I(S−1R) where

I(S−1R)
def
= {ax | a ∈ I, x ∈ S−1R}.

In the case where S = Rrp where p is a prime ideal of R, it is common to write IRp

for S−1I.

3 Closure of a multiplicative system (Optional)

It is possible for two multiplicative systems to have the same localization. This
happens if and only if the closures of the two systems are equal.

2Here N = {0, 1, 2, 3, . . .}.
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Definition 5. Let S be a multiplicative system of an integral domain R. Then the
closure S is defined to be the set of all d ∈ R such that d divides an element of S.

S
def
= {d ∈ R | de ∈ S for some e ∈ R} .

Proposition 4. Let S be a multiplicative system of an integral domain R.

• S ⊆ S.

• The closure S is also a multiplicative system of R.

• S = S.

• S−1R = S
−1

R

• Given an inclusion S1 ⊆ S2 between multiplicative systems, S1 ⊆ S2.

Lemma 5. Let S be a multiplicative system of an integral domain R. Then,

S =
(
S−1R

)× ∩R.

Here is the main result about uniqueness at the level of the closure:

Proposition 6. Let S1 and S2 be two multiplicative systems. Then S−1
1 R ⊆ S−1

2 R
if and only if S1 ⊆ S2. Thus S−1

1 R = S−1
2 R if and only if S1 = S2.

Proof. Use above lemma to show S−1
1 R ⊆ S−1

2 R implies S1 ⊆ S2.

4 Operations on ideals

The correspondence I 7→ S−1I is well-behaved with respect to the operations of
ideal addition and multiplication.3

Proposition 7. Let I1, I2 be ideals of an integral domain R. Let S be a multiplica-
tive system of R. Then in S−1R

S−1(I1 + I2) = (S−1I1) + (S−1I2)

and
S−1(I1I2) = (S−1I1)(S−1I2).

The correspondence is also well-behaved with respect to principle ideals:

Proposition 8. Let S be a multiplicative system of an integral domain R. If a ∈ R
then in S−1R

S−1(aR) = a(S−1R).

More generally, if U is a set of elements of R, and if I is the ideal generated by U
in R, then S−1I is the ideal generated by U in S−1R.

3Recall that I1 + I2 is defined as {a1 + a2 | a1 ∈ I1, a2 ∈ I2}. Recall that IJ is defined as the
set of finite sums x1y1 + . . . + xkyk where xi ∈ I and yi ∈ J . These operations result in ideals.
Likewise, the intersection of ideals is an ideal.
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The correspondence I 7→ S−1I is well-behaved with respect to intersections:

Proposition 9. Let I1, I2 be two ideals of an integral domain R. Let S be a
multiplicative system of R. Then in S−1R

S−1(I1 ∩ I2) = (S−1I1) ∩ (S−1I2).

Exercise 1. Let K be the field of fractions of an integral domain R. Recall K is
an R-module. Let M1,M2 be R-submodules of K. Define M1M2 so that it is a R-
submodule of K. Observe that M1+M2, M1M2, and M1∩M2 are all R-submodules
of K. Now show that the natural generalizations of Proposition 7, Proposition 8,
and Proposition 9 are valid for R-submodules of K.

Warning: suppose that a/s ∈ S−1I where a is in an ideal I of R, and s is a
multiplicative system S. It does not follow necessarily that a ∈ I. This is illustrated
in the following exercise.

Exercise 2. Let S = {2k | k ∈ N} ⊆ Z, and let I = 6Z. Show that 3/2 ∈ S−1I
even though 3 is not in I.

However, if p is a prime ideal disjoint from S we can ignore the above warning.
See the following exercise.

Exercise 3. Let S be a multiplicative system of an integral domain R. Let p be
a prime ideal disjoint from S. Show that if a/s ∈ S−1p with a ∈ R and s ∈ S
then a ∈ p.

5 Correspondence of ideals

Let R be an integral domain, and let S be a multiplicative system. As we have
seen, the correspondence

I 7→ S−1I

sends ideals of R to ideals of S−1R, and moreover it sends ideals disjoint from S to
proper ideals of S−1R.

There is another correspondence, but in the opposite direction. As we will see
in the next proposition, the correspondence

J 7→ J ∩R

sends ideals of S−1R to ideals of R.

Proposition 10. Let R be an integral domain, and let S be a multiplicative system.
Let J be an ideal of S−1R. Then J is a proper ideal if and only if it is disjoint
from S. Also, J ∩R is an ideal of R. Finally, if J is a proper ideal, then J ∩R is
a proper ideal of R disjoint from S.

In summary, there are two correspondences

{Ideals of R} →
{

Ideals of S−1R
}
, I 7→ S−1I

5



and {
Ideals of S−1R

}
→ {Ideals of R} , J 7→ J ∩R

A natural question is what happens when we compose these correspondences. In-
vertibility manifests in one of the two compositions:

Proposition 11. Let R be an integral domain, and let S be a multiplicative system.
Let J be an ideal of S−1R. Then

S−1(J ∩R) = J.

Since the composition of J 7→ (J ∩ R) followed by I 7→ S−1I is the identity on
the set of ideals of S−1R, we get the following:

Corollary 12. Let R be an integral domain, and let S be a multiplicative system.
The correspondence

I 7→ S−1I

is a surjection from the collection of ideals of R to the collection of ideals of S−1R.
The correspondence

J 7→ J ∩R

is an injection from the collection of ideals of S−1R to the collection of ideals of R.

Recall that a commutative ring R is Noetherian if and only if every ideal is
finitely generated.

Corollary 13. Let R be an integral domain, and let S be a multiplicative system
of R. If R is Noetherian, then S−1R is Noetherian.

Proof. Observe that if I is a finitely generated ideal of the form Ra1 + . . . + Rak
then S−1I is just (S−1R)a1 + . . . + (S−1R)ak . Since, by the previous corollary,
every ideal of S−1R is of the form S−1I for some ideal of R, the result follows.

The second composition does not, in general, act as the identity map:

Proposition 14. Let R be an integral domain, and let S be a multiplicative system
of R. Let I be an ideal of R. Then(

S−1I
)
∩R = {b ∈ R | sb ∈ I for some s ∈ S} .

As we will see, if we restrict the correspondences to prime ideals, the composi-
tions are invertible.

Exercise 4. Let R = Z with multiplicative system S = {2k | k ∈ N}. Show that
the map I 7→ S−1I is not injective, even on the collection of ideals disjoint from S,
by looking at the image of the ideals 3Z and 6Z.

Although the surjective map I 7→ S−1I is not, in general, injective, we can
identify a distinguished element in the preimage of any ideal J of S−1I:

Proposition 15. Let S be a multiplicative system of an integral domain R. Let J
be an ideal of S−1R, and let J be the set of ideals I of R such that I maps to J
under the map I 7→ S−1I. Then J has a maximum element, under the inclusion
relation. In fact, this maximum element is J ∩R.
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Proof. Note that J ∩ R ∈ J by Proposition 11. If I ∈ J then S−1I = J , which
implies I ⊆ J . So I ⊆ J ∩R.

6 Correspondence of prime ideals

Let R be an integral domain, and let S be a multiplicative system of R. Now we
restrict the two correspondences of the previous section to prime ideals to produce
a natural one-to-one correspondence.

Proposition 16. Suppose p is a prime ideal of R disjoint from S. Then S−1p is
a prime ideal of S−1R.

Proposition 17. Suppose p is a prime ideal of S−1R. Then p∩R is a prime ideal
of R disjoint from S.

We know have correspondences

{Prime ideals of R disjoint from S} →
{

Prime ideals of S−1R
}
, p 7→ S−1p

and{
Prime ideals of S−1R

}
→ {Prime ideals of R disjoint from S} , p 7→ p ∩R

Proposition 18. Let R be an integral domain, and let S be a multiplicative system
of R. The rule p 7→ S−1p defines an inclusion preserving bijection

{Prime ideals of R disjoint from S} →
{

Prime ideals of S−1R
}
.

The inverse sends a prime ideal p of S−1R to p∩R, and is also inclusion preserving.

Proof. The main point is to show that both compositions of p 7→ S−1p and p 7→ p∩R
are the respective identity maps. For one composition use Proposition 11. For the
other composition, observe that by Proposition 14 we have, for a prime ideal p of R,(

S−1p
)
∩R = {b ∈ R | sb ∈ p for some s ∈ S} .

If p is disjoint from S, then

{b ∈ R | sb ∈ p for some s ∈ S} = p.

Proposition 19. Let R be an integral domain, and let S be a multiplicative system
of R. Suppose m is a maximal ideal of R that is disjoint from S. Then S−1m is a
maximal ideal of S−1R.

Exercise 5. Show that, in the above proposition, we can weaken the hypothesis
that “m is a maximal ideal of R that is disjoint from S” to “m is a maximal element
among prime ideals disjoint from S”.
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Proposition 20. Let R be an integral domain, and let S be a multiplicative system
of R. Suppose R has the property that every nonzero prime ideal is maximal,
then S−1R also has this property.

Proposition 21. Let R be an integral domain with prime ideal p. Let S = R− p.
Then S−1p = pRp is the unique maximal ideal of S−1R = Rp. Furthermore the
group of units of Rp is the set of all elements of Rp outside the maximal ideal pRp.

7 Correspondence of S-large ideals

Let R be an integral domain and let S be a multiplicative system. The correspon-
dence

I 7→ S−1I

is a surjection from the collection of ideals of R to the collection of ideals of S−1R,
but it is not in general an injection. We had better luck when we restricted to prime
ideals not intersecting S. Now we consider another class of ideals which yields an
injection.

Definition 6. Let S be a multiplicative system of an integral domain. We say
that an ideal I is S-large if I is only contained in maximal ideals that are disjoint
from S.

Proposition 22. Let S be a multiplicative system of an integral domain R. The
collection of S-large ideals of R forms a monoid under products of ideals. In other
words, the product of two S-large ideals is S-large, and the ideal R is S-large.

Exercise 6. Let S be a multiplicative system of an integral domain R. Show that
if m is a maximal ideal of R that does not intersect S then m is S-large. Conclude
that mk is also S-large for any k ≥ 1.

Exercise 7. Let S be a multiplicative system of an integral domain R. Suppose I1
and I2 are ideals such that I1 ⊆ I2. Show that if I1 is S-large then so is I2.

Lemma 23. Let S be a multiplicative system of an integral domain R, and let I
be an S-large ideal. Then

(S−1I) ∩R = I.

Proof. Clearly I ⊆ (S−1I) ∩ R. Let a ∈ (S−1I) ∩ R. We can write a = b/s
where b ∈ I and s ∈ S. Let Ia = {c ∈ R | ac ∈ I}. This is an ideal of R
containing I. Suppose that Ia is a proper ideal, and let m be a maximal ideal
containing Ia. Since s ∈ Ia, we must have that m intersects S. But then this
contradicts the assumption that I is S-large since I ⊆ Ia ⊆ m. So Ia is not a
proper ideal, but is all of R. Since 1 ∈ Ia, we have a ∈ I.

Proposition 24. Let R be an integral domain and let S be a multiplicative system.
The correspondence

I 7→ S−1I

is an injective homomorphism from the monoid of S-large ideals to the monoid of
ideals of S−1R.
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8 Quotient rings

If p is a prime ideal of an integral domain R, and if S is a multiplicative systems
of R, how does R/p compare to (S−1R)/(S−1p)?

Proposition 25. Let R be an integral domain with multiplicative system S. Let p
be a prime ideal of R that is disjoint from S. Then there is a natural injective ring
homomorphism

R/p → (S−1R)/(S−1p)

sending [a] to [a]. If p = m is a maximal ideal, then this map is an isomorphism:

R/m ∼= (S−1R)/(S−1m).

Proof. Start by showing that p is the kernel of the natural composition

R→ S−1R→ (S−1R)/(S−1p).

Also, recall that R/m is a field if m is a maximal ideal.

Exercise 8. Let R,S, p be as in the above proposition, and identify A = R/p with
a subring of (S−1R)/(S−1p). Let T be the image of S in A. Show that T is a
multiplicative system of the integral domain A and that (S−1R)/(S−1p) can be
identifies with T−1A.

Exercise 9. Suppose p is a prime ideal of an integral domain R. Show that the
integral domain A = R/p can be identified with a subring of F = Rp/pRp, and
that under this identification F is the field of fractions of A.

We can extend the isomorphism R/m ∼= (S−1R)/(S−1m) of Proposition 25
from maximal ideals m to S-large ideals discussed in the previous section.

Lemma 26. Let I be an S-large ideal of an integral domain R where S multiplica-
tive system of R. If s ∈ S then the coset [s] is invertible in R/I.

Proof. Observe that the ideal I + sR is not contained in any maximal ideal. This
means that I + sR = R. Write b + sa = 1 where b ∈ I and a ∈ R. So [a] is the
inverse of [s] in R/I.

Proposition 27. Let I be an S-large ideal of an integral domain R where S mul-
tiplicative system of R. Then we have a natural isomorphism

R/I ∼= S−1R/S−1I, [a] 7→ [a].

Proof. Consider the composition of natural homomorphisms:

R→ S−1R→ S−1R/S−1I.

Observe that the kernel is (S−1I)∩R. By Lemma 23 this is I. So we get a natural
injective homomorphism

R/I → S−1R/S−1I.

Observe that every element of S−1R/S−1I can be written as [a][s]−1 where a ∈ R
and s ∈ S. Obviously [a] is in the image of our map. Also [s]−1 is in the image by
Lemma 26. So [a][s]−1 is in the image. We conclude that the natural injection is
also surjective.

9



Corollary 28. Let m be a maximal ideal of an integral domain. Then we have a
natural isomorphism

R/mk ∼= Rm/(mRm)k.

9 Integrally closed integral domains

Let R be an integral domain with field of fractions K. We say that R is integrally
closed if, for every monic f ∈ R[X], every root of f in K is actually in R.

Lemma 29. Let R be an integrally closed integral domain. Suppose f ∈ K[X] is
a monic polynomial such that sf ∈ R[X] where s ∈ R is nonzero. Then every root
of f in K is of the form a/s with a ∈ R.

Proof. We can assume the degree d of of f is at least 1. Since sf ∈ R[X], we have
also sdf ∈ R[X]. Observe that there is a monic polynomial g ∈ R[X] such that

g(sX) = sdf(X).

Observe also that if x ∈ K is a root of f then g(sx) = 0. Since R integrally
closed, sx = a for some a ∈ R.

Proposition 30. Let R be an integral domain, and let S be a multiplicative system
of R. If R is integrally closed, then so is S−1R.

Proof. Let x ∈ K be a root of f ∈ S−1R[X] where f is monic and where K is the
field of fractions of R. Let s ∈ S be such that sf ∈ R[X]. By the lemma, x = a/s
for some a ∈ R. Thus x ∈ S−1R.

Definition 7. An integral domain R is called a Dedekind domain if (1) R is inte-
grally closed, (2) every nonzero prime ideal of R is maximal, and (3) R is Noetherian.

Proposition 31. Let R be a Dedekind domain, and let S be a multiplicative system
of R. Then S−1R is a Dedekind domain.

10 Localizing away from differences

Now we consider the case of related integral domains R1 and R2 with the same
field of fractions K. The goal is to identify and investigate common multiplicative
systems S such that S−1R1 = S−1R2. (Such considerations are of interest when
studying orders in algebraic number fields.)

Lemma 32. Suppose R1, R2 are two integral domains with the same field of frac-
tions. Suppose S is a multiplicative system for both R1 and R2 and that

sR2 ⊆ R1

where s ∈ S. Then
S−1R2 ⊆ S−1R1.
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Corollary 33. Suppose R1, R2 are two integral domains with the same field of
fractions. Suppose that S is a multiplicative system for R1 and that

sR2 ⊆ R1 ⊆ R2

for some s ∈ S. Then S is also a multiplicative system for R2 and

S−1R1 = S−1R2.

Corollary 34. Suppose R1, R2 are two integral domains with the same field of
fractions. Suppose S is a multiplicative system for R1 and

sR2 ⊆ R1 ⊆ R2

for some s ∈ S. Then p 7→ p ∩ R1 defines a inclusion preserving bijection between
prime ideals of R2 not intersecting S and prime ideals of R1 not intersecting S.
If m1 is a maximal ideal of R1 not intersecting S, and if m2 is the corresponding
prime ideal of R2, then

R1/m1
∼= R2/m2

under an isomorphism sending [a] to [a].

Proof. Let P0 be the set of prime ideals of S−1R1 = S−1R2. Let Pi be the set of
prime ideals of Ri disjoint form S. We use Proposition 18 to form a bijection by
composition:

P2 → P0 → P1.

This sends p first to S−1p, which is sent in turn to (S−1p) ∩R1. But observe that

(S−1p) ∩R1 = p ∩R1.

Now suppose m1 is a maximal ideal of R1 disjoint from S and that m2 is the
corresponding prime ideal of R2. By Proposition 25, we have ring homomorphisms

R1/m1 → (S−1R1)/(S−1m1), [a] 7→ [a]

R2/m2 → (S−1R2)/(S−1m2), [a] 7→ [a]

The first is an isomorphism since m1 is maximal, and the second is at least injective
since m2 is a prime ideal. Note that S−1R1 = S−1R2 and S−1m1 = S−1m2.
Since R1 ⊆ R2 and the first map is already surjective, the second must also be
surjective. Thus m2 is maximal, and we get the desired isomorphism.
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