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In my essay “What are discrete valuation rings? What are Dedekind domains?”
I give an account of many of the classic results about Dedekind domains including
the theorem that an integral domain R is a Dedekind domain if and only if every
fractional ideal of R is invertible. Recall that a Dedekind domain R is an integral
domain satisfying three properties:

1. R is Noetherian.

2. R is integrally closed.

3. Every nonzero prime ideal of R is maximal.

It turns out that much of the theory of Dedekind domains can be carried out with
only the first two properties. The basic idea is to replace fractional ideals by equiv-
alence classes of fractional ideals that are called divisors. We get invertibility for
such divisors when (1) and (2) hold and, in fact, in the more general setting of “com-
pletely integrally closed domains”. In addition to invertibility, we are interested in
unique factorization. In order to have unique factorization of divisors condition (1)
and (2) are also sufficient, but we can generalize to completely integrally closed
domains that satisfy a weakened version of (1): the ACC not for all ideals of R, but
for the so-called divisorial ideals (each equivalence class of ideals has a maximum
element called its divisorial ideal). Completely integrally closed domains with this
weakened version of ACC are called Krull domains which are introduced in this
essay.

According to B. L. van der Waerden Algebra, the theory of divisors presented
here started with a publication by van der Waerden himself in 1929, and then was
refined by E. Artin. The refined theory appears in the many editions of van der
Waerden’s famous Algebra textbook.1

∗Copyright c© 2019 by Wayne Aitken. Version of December 17, 2019. This work is made
available under a Creative Commons Attribution 4.0 License. Readers may copy and redistributed
this work under the terms of this license.

1The first edition of van der Waerden’s textbook dates from 1930–1931 and was titled Moderne
Algebra. The fifth edition was published in 1967. My source is the English translation of the second
volume of the fifth edition titled Algebra II published by Springer–Verlag in 1991, specifically
Section 17.7.

We note that van der Waerden does not develop the theory in general Krull domains, but limits
himself to Noetherian integral domains that are integrally closed.
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The theory of invertibility of divisors starts with the observation that, in an
integral domain R with fraction field K, the inverse of a fractional ideal I, if it
exists, is given by

I−1 = {x ∈ K | xI ⊆ R}.

This definition of inverse will prove critical even at the level of equivalence classes
(i.e., divisors). Although some fractional ideals I fail to have a true inverse in a
general integral domain, we will still want to use the above ideal which we will
call the formal inverse and denote by I−1 even if it is not the true inverse. In
general II−1 will not nessarily be the identity ideal R, but II−1 ⊆ R holds generally.
If we can set up an equivalence relation such that [II−1] = [R] at the level of
equivalence classes then we have achieved invertibility.

What should the equivalence relation be? We would hope that it would be
faithful with respect to divisibility of elements of R. So xR should be equivalent
to yR if and only if xR = yR. Note that distinct principal fractional ideals have
distinct inverses. However, for fractional ideals in general it is possible that two
distinct fractional ideals I, J have the same formal inverse I−1 = J−1. So if we
want an equivalence relation ∼ relation where [I−1] is the inverse of [I], it must have
the property that I−1 = J−1 implies I ∼ J . Van der Waerden’s idea is to build
an equivalence relation around this constraint and use the equivalence relation ∼
where I ∼ J if and only if I−1 = J−1. This turns out to work well for Noetherian
integral domains that are integrally closed, or more generally integral domains
that are completely integrally closed (see Section 3 for the definition of completely
integrally closed). The first part of this document is devoted to developing the
theory of divisors considered as equivalence classes under this equivalence.

Then we turn to the topic of Krull domains and unique factorization of divisors.
We conclude with some basic properties of Krull domains.

I have attempted to give full and clear statements of the definitions and results,
with motivations provided where possible, and give indications of any proof that is
not straightforward. My philosophy is that, at this level of mathematics, straight-
forward proofs are best worked out by the reader. So, whenever a proof is not given
or is sketchy, this signals to the reader that they should work out the proof and
that the details are reasonably straightforward.

1 General background

This is a sequel to my essay What are discrete valuation rings? What are Dedekind
domains?, so I assume familiarity with some of the material presented there includ-
ing material concerning Dedekind domains and fractional ideals. Some material on
fractional ideals is reviewed in the next section. Starting in Section 7, I assume
familiarity with discrete valuations and discrete valuation rings (DVRs). Starting
in Section 8, I assume familiarity with localization in an integral domain. These
topics can be found in my earlier essays, and in many other places.

We adopts some notation. Let R be an integral domain. If such an R is a
Noetherian ring we call it a Noetherian domain. If such a ring R is integrally closed
we call it an integrally closed domain.
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2 Fractional ideals (background)

In this section we review, without proof, some basic properties of fractional ideals.
Throughout this section let R be an integral domain and let K be its fraction field.
A fractional ideal I is a nonzero R-submodule of K such that dI is an ideal for
some nonzero d ∈ R. By way of contrast, we sometimes call an ideal I of R an
integral ideal. We note that every finitely generated nonzero R-submodule of K
must be a fractional ideal. The converse holds for Noetherian rings, but not for
general integral domains.

Given two fractional ideals I and J , we define the fractional ideal IJ as the
collection of finite sums of products xy with x ∈ I and y ∈ J . The collection of
fractional ideals forms a commutative monoid under multiplication with identity
element being the identity ideal I = R. If I is a fractional ideal of R, then we say
that I is invertible if there is a fractional ideal J such that IJ = R.

If R is a Dedekind domain then every fractional ideal I is invertible with inverse
given by

I−1 = {x ∈ K | xI ⊆ R}.

In particular, II−1 = R. In a general integral domain, not every fractional ideal is
invertible in the sense that II−1 = R. Although I−1 is not the inverse of I if I is
not invertible, we still use the notation I−1 and we call it the formal inverse. In
general we have the following properties for I a fractional ideal:

1. II−1 ⊆ R.

2. I−1 is a fractional ideal.

3. I−1 is the maximum fractional ideal J (under inclusion) such that IJ ⊆ R.
In other words, if IJ ⊆ R then J ⊆ I−1.

4. If there is a fractional ideal J with the property that IJ = R, then J = I−1.

If I, J are fractional ideals with I ⊆ J then

J−1 ⊆ I−1.

We will use formal inverses to define an equivalence relation on the monoid of
fractional ideals, then show that this equivalence relation is well-behaved under
products. Divisors will be defined as equivalence classes under this equivalence
relation.

If I is a fractional ideal of R, it may turn out to be a fractional ideal for other
rings R′ such that R ⊆ R′ ⊆ K. We can characterize the maximum such ring:

Definition 1. Let R be an integral domain and let K be its fraction field. If I is
a fractional ideal, then

R(I)
def
= {x ∈ K | xI ⊆ I}.

Proposition 1. Let R be an integral domain and let K be its fraction field. If I
is a fractional ideal of R, then the following hold:

• R(I) is a subring of K containg R: so R ⊆ R(I) ⊆ K.
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• I is a fractional ideal of R(I), where scalar multiplication is induced by the
product of K. In fact, R(I) is the maximum subring R′ of K (under inclusion)
such that I is a fractional ideal of R′.

• R(I) is a fractional ideal of R.

3 Completely integral closed domains

In this section let R be an integral domain and let K be its fraction field. Recall that
an element x ∈ K is said to be integral over R if x is a root of a monic polynomial
in the polynomial ring R[X]. We take it as established background knowledge that
this holds if and only if R[x] is a finitely generated fractional ideal of R. We say
that R is integrally closed if every element of K that is integral over R is actually
in R. So we have the following:

Proposition 2. Let R be an integral domain with field of fractions K. Then R is
integrally closed if and only if the following holds for all x ∈ K:

If R[x] is a finitely generated fractional ideal then R[x] = R.

If we drop the requirement “finitely generated” we have a stronger condition:

Definition 2. Let R be an integral domain with field of fractions K. Then R is
said to be completely integrally closed if the following holds for all x ∈ K:

If R[x] is a fractional ideal then R[x] = R.

An integral domain that is completely integrally closed will be called a completely
integrally closed domain.

We have the following equivalences:

Proposition 3. Let R be an integral domain with field of fractions K. Then the
following are equivalent:

1. R is completely integrally closed. In other words, for all x ∈ K, if R[x] is a
fractional ideal then R[x] = R.

2. R(I) = R. for all fractional ideals I of R.

3. For all x ∈ K and all nonzero d ∈ R, if dxk ∈ R for all k ≥ 1 then x ∈ R.

Proof. (1) =⇒ (2). Suppose x ∈ R(I) for some fractional ideal I. Then R[x]
is an R-submodule of the fractional ideal R(I). So R[x] is itself a fractional ideal
of R. Thus R[x] = R. Therefore x ∈ R. So R(I) ⊆ R, hence R(I) = R.

(2) =⇒ (1). Let I = R[x] be a fractional ideal. Then R ⊆ R[x] ⊆ R(I) = R.
(1) =⇒ (3). Suppose x ∈ K and d ∈ R are such that dxk ∈ R for all k ≥ 1

where d is nonzero. Then dR[x] ⊆ R. So I = R[x] is a fractional ideal of R.
Thus R[x] = R. Therefore, x ∈ R.

(3) =⇒ (1). Assume that x ∈ K is such that R[x] is a fractional ideal of R.
So dR[x] ⊆ R for some nonzero d ∈ R. In particular, dxk ∈ R for all k ≥ 0. By
condition (3), x ∈ R. Thus R[x] = R.
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Proposition 4. Suppose that R is a Noetherian domain. Then R is completely
integrally closed if and only if R is integrally closed.

Suppose R is an integral domain. Then R is completely integrally closed implies
that R is integrally closed.

Proof. Every fractional ideal of a Noetherian domain is finitely generated.

The intersection of completely integrally closed domains is completely integrally
closed:

Proposition 5. Let K be a field, and let (Ri)i∈I be a nonempty family of subrings
of K. If each Ri is completely integrally closed, then so is the intersection R.

Proof. Let K ′ be the fraction field of R. Suppose that d ∈ R is nonzero and
that x ∈ K ′ is such that dxk ∈ R for all k ≥ 1. In particular, for each Ri in the
family, d ∈ Ri, x is in the fraction field of Ri, and dxk ∈ Ri for all k ≥ 1. Since Ri

is completely integrally closed, x ∈ Ri. So x is in the intersection R.

4 Inverse-inclusion, inverse-equality, and divisors

We now consider relations on fractional ideals involving formal inverses I−1. In
most of this section R will be a general integral domain with fraction field K.

As we have noted, if I, J are fractional ideals with J ⊆ I then I−1 ⊆ J−1.
However, the converse is not true in general. When the converse does hold, it
signifies an important “divisibility-like” relation between I and J :

Definition 3. Let I, J be fractional ideals of an integral domainR. We define I ≤ J
to mean I−1 ⊆ J−1. We call this relation inverse-inclusion.

Proposition 6. This inverse-inclusion relation is reflexive and transitive.

Proposition 7. Let I, J be fractional ideals of an integral domain R. If J ⊆ I
then I ≤ J .

Proposition 8. Let I, J be fractional ideals of an integral domain R and let K be
the fraction field of R. The following are equivalent:

1. I ≤ J , in other words I−1 ⊆ J−1.

2. For all x ∈ K, if xI ⊆ R then xJ ⊆ R.

3. For all x ∈ K×, if I ⊆ xR then J ⊆ xR.

4. JI−1 ⊆ R.

Proof. The equivalences 1 ⇐⇒ 2 and 2 ⇐⇒ 3 are straightforward. For 1 ⇐⇒ 4,
note that J−1 is the maximum fractional ideal J ′ such that JJ ′ ⊆ R.

Proposition 9. Let I1, I2, J be fractional ideals of an integral domain R. If I1 ≤ I2
then I1J ≤ I2J .
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Proof. Since (I1J)(I1J)−1 ⊆ R we have J(I1J)−1 ⊆ I−11 . However, by assump-
tion I−11 ⊆ I−12 . Thus J(I1J)−1 ⊆ I−12 . So (I2J)(I1J)−1 ⊆ I2I

−1
2 ⊆ R. By the

previous proposition I1J ≤ I2J .

Proposition 10. Let I be a fractional ideal of an integral domain R. Then R ≤ I
if and only if I is an integral ideal.

Proof. This is straightforward given Proposition 8 part 4.

Proposition 11. Let I, J be fractional ideals of an integral domain R. If I ≤ J
then J ⊆ (I−1)−1.

Proof. By Proposition 8 part 4 we have JI−1 ⊆ R. The conclusion follows.

Corollary 12. Let I, J be fractional ideals of an integral domain R. If I is invert-
ible then I ≤ J if and only if J ⊆ I.

Proof. One direction was noted above (Proposition 7). So assume I ≤ J and use
the above proposition.

Definition 4. Let I, J be fractional ideals of an integral domainR. We define I ∼ J
to mean I−1 = J−1. We call this relation inverse-equality.

Proposition 13. Let I, J be fractional ideals of an integral domain R. Then I ∼ J
if and only if I ≤ J and J ≤ I.

Proposition 14. Suppose I ∼ J where I and J are fractional ideals of an integral
domain R. Then I is an integral ideal if and only if J is an integral ideal.

Proof. This is straightforward given the previous proposition and Proposition 10.

Proposition 15. Let R be an integral domain. The inverse-equality relation is an
equivalence relation on the set of fractional ideals of R.

Proposition 16. Suppose I1 ∼ I2 and J1 ∼ J2 where I1, I2, J1, J2 are fractional
ideals of an integral domain R. Then I1 ≤ J1 if and only if I2 ≤ J2. In addi-
tion, I1J1 ∼ I2J2.

Definition 5. Let I, J be fractional ideals of an integral domain R. Let [I] and [J ]
be the equivalence classes under inverse-equality. Then [I] ≤ [J ] is defined to be
true if and only if I ≤ J . Similarly, [I][J ] is defined to be [IJ ]. By the above
lemma, these definition are well-defined.

Proposition 17. Let R be an integral domain. The set of equivalence classes of
fractional ideals of R under inverse-equality is a commutative monoid with iden-
tity [R]. This set is partially ordered under the relation ≤.

Definition 6. If I is a fractional ideal of an integral domain R then its equivalence
class [I] under inverse-equality is called the divisor of I. The collection of such
equivalence classes is called the divisor monoid of R.
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The criterion of Proposition 8 part 3 tells us that all that matters for determining
the relation ≤, and hence ∼, is the principal fractional ideals that contain the given
fractional ideals. Observe that in fact the intersection of principal ideals containing
the given fractional ideals is enough to determine ≤. This leads to the following
definition:2

Definition 7. Let R be an integral domain. Given a fractional ideal I of R, we
define I to be the intersection of all principal fractional ideals containing I:

I
def
=

⋂
I⊆xR

xR

Proposition 18. If I is a fractional ideal of an integral domain, then I is a frac-
tional ideal containing I. If I is principal then I = I. Furthermore, I is an integral
ideal if and only if I is an integral ideal.

Proposition 19. Let I and J be fractional ideals of an integral domain R. Then
the following are equivalent:

1. I ≤ J .

2. J ⊆ I.

3. J ⊆ I.

Proof. This is straightforward using the criterion of Proposition 8 part 3 and the
fact that J ⊆ J .

Corollary 20. Let R be an integral domain and let I and J be fractional ideals
of R. Then I ∼ J if and only if I = J .

Proposition 21. Let I be a fractional ideal of an integral domain. Then I ∼ I.

Thus I = I. Moreover, I is the maximum element, under inclusion, in the collection
of fractional ideals J such that I ∼ J .

Proof. We have I ≤ I since I ⊆ I (Proposition 7). We also have I ≤ I since I ⊆ I
(Proposition 19). So I ∼ I. Thus I = I (see above Corollary).

Suppose that I ∼ J . Then J ⊆ I (Proposition 19). So I is the maximum
such J .

This allows us to regard I as the canonical representative of the equivalence
class [I]:

Definition 8. Let I be a fractional ideal of an integral domain. The ideal I is
called a divisorial ideal, and is called the divisorial ideal associated with I.

We can use formal inverses to characterize I. In fact, as we will see I is

just
(
I−1

)−1
.

Lemma 22. Let I be a fractional ideal of an integral domain R. Then I ≤
(
I−1

)−1
.

2These ideas are explored in more depth in Section 9.
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Proof. We use the criterion of Proposition 8, part 2. So suppose xI ⊆ R where x

is in the fraction field K of R. Then x ∈ I−1. Thus x
(
I−1

)−1 ⊆ R.

Proposition 23. Let I be a fractional ideal of an integral domain R. Then

I =
(
I−1

)−1
.

In particular, if I is an invertible fractional ideal then I = I.

Proof. From Proposition 11 we have I ⊆
(
I−1

)−1
. Thus

(
I−1

)−1 ≤ I (Proposi-

tion 7). When combined with the previous lemma, we get I ∼
(
I−1

)−1
. We just

need to show that
(
I−1

)−1
is the maximum in its equivalence class.

So suppose I ∼ J . Then J ⊆
(
I−1

)−1
by Proposition 11. Thus

(
I−1

)−1
is the

maximum in the equivalence class of I, and must be I.

The above discussion is in the context of a general integral domain. Our goal,
of course, is to have the identity [I][I−1] = [R]. This will require more specialized
rings. In particular, R should be Noetherian and integrally closed, or at least
completely integrally closed (Definition 2).

Lemma 24. Suppose R is an integrally closed Noetherian domain, or more gener-
ally a completely integrally closed domain. Then II−1 ≤ R for all fractional ideals I
of R.

Proof. We use the criterion of Proposition 8, part 2. Suppose xII−1 ⊆ R. This
implies xI−1 ⊆ I−1, so x ∈ R(I−1). By Proposition 3, R(I−1) = R. So x ∈ R.
Thus we have xR ⊆ R.

Theorem 25. Suppose R is an integrally closed Noetherian domain, or more gen-
erally a completely integrally closed domain. Then

[I]
[
I−1

]
= [R]

for each fractional ideal I of R. So the divisor monoid of R is an Abelian group
and the inverse of a divisor [I] is just

[
I−1

]
.

Proof. Since II−1 is an integral ideal we have R ≤ II−1 (Proposition 10). By the
above lemma we have II−1 ≤ R, and so R ∼ II−1. The result follows.

There is a converse to this theorem. We begin with a lemma.

Lemma 26. Suppose R is an integral domain whose divisor monoid satisfies the
cancellation law. Suppose that K is the fraction field of R and that R′ is a ring
such that R ⊆ R′ ⊆ K. If R′ is a fractional ideal (as an R-submodule of K)
then R′ = R.

Proof. If I = R′ then II = I since R′ is a ring. By the cancellation law, [I] = [R].
In particular, R ≤ I. So I ⊆ R (Proposition 10). In other words R′ ⊆ R and
so R′ = R.
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Theorem 27. Suppose R is an integral domain whose divisor monoid is a group,
or more generally whose divisor monoid satisfies the cancellation law. Then R is
completely integrally closed.

Proof. Let I be a fractional ideal of R. Then R(I) is a ring, and a fractional
ideal containing R (Proposition 1). By the above lemma, R(I) = R. Thus R is
completely integrally closed (Proposition 3).

5 Irreducible and prime divisors

Our next goal is to identify irreducible and prime divisors of an integral domain R
in terms of certain prime ideals of R.

Definition 9. An integral divisor of an integral domain R is a divisor of the form [I]
where I is a nonzero integral ideal.

In other words, if I is a nonzero integral ideal then [I] is an integral divisor.
The converse holds (see Proposition 14):

Lemma 28. Let I be a fractional ideal of an integral domain. If [I] is an integral
divisor, then I must be an integral ideal.

Proposition 29. Let I be a fractional ideal of an integral domain R. Then [I] is
an integral divisor if and only if [R] ≤ [I].

Corollary 30. Let R be an integral domain. Then [R] is the minimum integral
divisor. In particular, if [I] ≤ [R] and [I] is an integral divisor then [I] = [R].

Now we consider irreducible and prime divisors.

Definition 10. A integral divisor [I] is said to be irreducible if (i) [I] 6= [R] and
(ii) if [J ] ≤ [I] where [J ] is an integral divisor then [J ] = [R] or [J ] = [I].

Definition 11. A integral divisor [P ] is said to be prime if (i) [P ] 6= [R] and (ii)
if [P ] ≤ [I][J ] where [I] and [J ] are integral divisors then [P ] ≤ [I] or [P ] ≤ [J ].

Proposition 31. Let [P ] be an irreducible divisor in an integral domain R.
Then [P ] is a prime divisor.

Proof. The divisor [P ] integral and not equal to [R] by assumption. Now suppose
that [P ] ≤ [I][J ] where I, J are nonzero ideals of R. Then IJ ⊆ P (Proposition 19).
This implies that (I + P )(J + P ) ⊆ P . In particular [P ] ≤

[
I + P

] [
J + P

]
.

Since P ⊆ I + P , we have
[
I + P

]
≤ [P ] (Proposition 7). By irreducibility,

either
[
I + P

]
= [R] or

[
I + P

]
= [P ]. In the second case, P ≤ I+P so I+P ⊆ P

(Proposition 19). In this case I ⊆ P , and [P ] ≤ [I] as desired (Proposition 19).
Similarly, either

[
J + P

]
= [R] or [P ] ≤ [J ].

It cannot be that
[
I + P

]
= [R] and

[
I + P

]
= [R]. Otherwise, [P ] ≤ [R][R]

which implies that [P ] = [R] (Corollary 30), a contradiction. So either [P ] ≤ [I]
or [P ] ≤ [J ].
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Proposition 32. Let [P ] be an integral divisor in an integral domain R. Then [P ]
is a prime divisor if and only if P is a prime ideal.

Proof. Suppose [P ] is a prime divisor. Since [P ] 6= [R], we have P 6= R = R.
Thus P is a proper ideal. Suppose that ab ∈ P . In other words (aR)(bR) ⊆ P .
Therefore [P ] ≤ [aR][bR] (Proposition 19). Since [P ] is prime, we have two cases:
either [P ] ≤ [aR] or [P ] ≤ [bR]. In the first case, aR ⊆ P (Proposition 19),
and a ∈ P . In the second case b ∈ P . So P is a prime ideal.

Now suppose P is a prime ideal. Since P 6= R = R, we have [P ] 6= [R].
Suppose that [P ] ≤ [I][J ] where I, J are nonzero integral ideals. Thus IJ ⊆ P
(Proposition 19). Since P is a prime ideal, either I ⊆ P or J ⊆ P . In the first
case, [P ] ≤ [I], in the second case [P ] ≤ [J ] (Proposition 19). Thus [P ] is a prime
divisor.

The above is valid if R is a general integral domain where the divisor monoid
is not necessarily a group. In the following we restrict ourselves to completely
integrally closed domains in order to leverage the group properties.

Proposition 33. Suppose I and J are fractional ideals in a completely integrally
closed domain R. If I ≤ J then there are nonzero integral ideals I ′ and J ′ such
that (i) II ′ = JJ ′ and (ii) [J ′] = [R]. In particular, [I][I ′] = [J ].

Proof. By Proposition 8 part 4 we have that I ′ = JI−1 and J ′ = II−1 are integral
ideals. Also

II ′ = I(JI−1) = J(II−1) = JJ ′.

Observe that [J ′] = [II−1] = [R] since R is complete integrally closed (Theorem 25).
In particular,

[I][I ′] = [J ][J ′] = [J ][R] = [J ].

Proposition 34. Suppose [I] and [J ] are integral divisors in a completely integrally
closed domain R. Then [I] ≤ [J ] if and only if [I] divides [J ] in the sense the there
is an integral divisor [I ′] such that [I][I ′] = [J ].

Proof. One implication follows from the previous proposition. If [I][I ′] = [J ]
then II ′ ∼ J , so II ′ ≤ J . Since II ′ ⊆ I we have I ≤ II ′ (Proposition 7).
Thus I ≤ J by transitivity of ≤.

Proposition 35. Suppose [I] and [J ] are integral divisors in a completely integrally
closed domain R. If [I] = [J ] then there are nonzero integral ideals I ′ and J ′ such
that (i) II ′ = JJ ′ and (ii) [I ′] = [J ′] = [R].

Proof. Let I ′ = JI−1 and let J ′ = II−1. Then

II ′ = I(JI−1) = J(II−1) = JJ ′.

Now use Theorem 25 to conclude that [I ′] = [J ′] = [R]. Also I ′ and J ′ are integral
ideals since I ≤ J and I ≤ I (Proposition 8 part 4).
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Now we continue our consideration of irreducible and prime divisors. We begin
by expanding Proposition 31 to incorporate its converse:

Proposition 36. Let [P ] be an integral divisor in a completely integrally closed
domain R. Then [P ] is an irreducible divisor if and only if [P ] is a prime divisor.

Proof. One direction has been shown (Proposition 31). So suppose [P ] is a prime
divisor. Observe that [P ] is not equal to [R] by the definition of prime divisor.
Now suppose that [I] ≤ [P ] where [I] is an integral divisor. There is an inte-
gral divisor [I ′] such that [I][I ′] = [P ] (Proposition 34). Since [P ] is prime and
since [P ] ≤ [I][I ′], we have two cases: [P ] ≤ [I] or [P ] ≤ [I ′].

In the first case [I] = [P ] as desired for showing [P ] is irreducible.
In the second case [P ][I ′′] = [I ′] for some integral divisor [I ′′] (Proposition 34).

So [I][P ][I ′′] = [I][I ′] = [P ]. After cancelling we get [I][I ′′] = [R] (see Theorem 25).
This means [I] ≤ [R] (Proposition 34). So [I] = [R] (Corollary 30) as desired for
showing [P ] is irreducible.

Now that we know that the irreducible divisors and prime divisors coincide, we
will focus on the prime ideals associated to such divisors.

Proposition 37. Suppose p is a nonzero prime ideal in a completely integrally
closed domain R. Then either (i) p = R and [p] = [R], or (ii) p = p and [p] is a
prime divisor.

Proof. Since [ p ] = [p] (Proposition 21) we have pI = pJ for some nonzero integral
ideals I and J with [I] = [J ] = [R] (Proposition 35). In particular, pI ⊆ p. Since p
is a prime ideal, either I ⊆ p or p ⊆ p.

In the first case [p] ≤ [I] = [R] (Proposition 7). So [p] = [R] (Corollary 30),
which implies p = R (Corollary 20).

In the second case, we also have p ⊆ p (Proposition 18) so p = p. This implies
also that [p] is a prime divisor (Proposition 32).

The only type of prime ideal that can yield a prime divisor are minimal prime
ideals.

Definition 12. Let R be an integral domain. Then a minimal prime ideal is a
minimal element in the set of nonzero prime ideals. In other words, if p is a minimal
prime ideal and if q is a nonzero prime ideal, then q ⊆ p implies that q = p.

Proposition 38. Suppose p is a nonzero prime ideal in a completely integrally
closed domain R. If [p] is a prime divisor in R then p is a minimal prime ideal
of R.

Proof. Suppose q is a nonzero prime ideal with q ⊆ p. Then [p] ≤ [q] (Proposi-
tion 7). Observe that if [q] = [R] then [p] ≤ [R], and so [p] = [R] (Corollary 30), a
contradiction since [p] is assumed prime. So [q] 6= [R], which by the above Propo-
sition implies that [q] is a prime divisor.

By the irreducibility of [q] (Proposition 36) either [p] = [R] or [p] = [q]. The
first does not happen since [p] is a prime divisor. Thus [p] = [q] and hence p = q
(Corollary 20). But by the previous proposition, p = p and q = q. Thus p = q.
This show that p is a minimal prime ideal.
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Corollary 39. Suppose p is a nonzero prime ideal in a completely integrally closed
domain R. If p is not a minimal prime ideal of R then [p] = [R].

Proof. This is straightforward given Propositions 37 and 38.

Corollary 40. Suppose [P ] is a prime divisor in a completely integrally closed
domain R. Then P is a minimal prime ideal of R.

Proof. We have that p = P is a nonzero prime ideal by Proposition 32. Observe
that [P ] =

[
P
]

= [p] (Proposition 21). Since [p] is a prime divisor, p is a minimal
prime ideal by Proposition 38.

Question. Suppose p is a minimal prime ideal in a completely integrally closed
domain R. Is it always true that [p] is a prime divisor, or is it possible for [p] to
be [R]? We will address this question in the next section at least for Krull domains.

In a general integral domain that is completely integrally closed we are not
guaranteed the existence of a prime factorization for all divisors. But if a divisor
has such a factorization, the factorization is essentially unique. This is assured by
the following:

Proposition 41. Suppose [P1], . . . , [Pk] and [Q1], . . . , [Ql] are two finite sequences
of prime divisors in a completely integrally closed domain R. If their respective
products are equal,

[P1] · · · [Pk] = [Q1] · · · [Ql],

then k = l and, after rearranging the order of the sequences, [Pi] = [Qi]
for 1 ≤ i ≤ k. We allow empty sequences, where the product of an empty sequence
is considered to be the identity divisor [R].

Proof. In the proof we can make the extra assumption that k ≥ l. We prove the
result by strong induction on n = k+ l. If n = 0 then k = l = 0 and both sequences
are the empty sequence. So the result holds.

Next we assume n = k + l > 0. Since k ≥ l we have k > 0. Suppose first that l
is 0. In this case then [Pk] ≤ [R] (Proposition 34), so [Pk] = [R] (Corollary 30).
This cannot occur since [Pk] is a prime divisor.

So we can assume both k > 0 and l > 0. Here [Pk] ≤ [Q1] · · · [Ql] (Proposi-
tion 34). By definition of prime divisor, [Pk] ≤ [Qi] for some i (Definition 11). After
rearranging the [Qj ] we can assume that [Pk] ≤ [Ql]. So Ql ⊆ Pk (Proposition 19).
Since Ql and Pk are both minimal prime ideals (Corollary 40), Pk = Ql, which
means [Pk] = [Ql] (Corollary 20). We can cancel (Theorem 25) obtaining

[P1] · · · [Pk−1] = [Q1] · · · [Ql−1].

By the inductive hypothesis, k − 1 = l − 1 so k = l. Also by induction we can
rearrange the divisors so that [Pi] = [Qi] for each i.

6 Unique factorization of divisors in Krull domains

Now we will consider the topic of unique factorization of divisors. Above we worked
either in the setting of an integral domain, where we have a monoid of divisors, or
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in the more specific setting of a completely integrally closed domain where we have
a group of divisors.

In order to achieve unique factorization into prime divisors, we will need to go
further and assume that our ring has some sort of ascending chain condition (ACC).
An extra assumption that our ring is Noetherian would suffice but is actually
stronger than what we need; we just need the ACC for divisorial integral ideals.
This motivates our introduction of a kind of ring called a Krull domain:

Definition 13. A Krull domain is an integral domain R that satisfies the following
properties:

1. R is completely integrally closed. (In other words R(I) = R for all fractional
ideals I of R).

2. Every nonempty collection of divisorial integral ideals of R has a maximal
element under inclusion. In other words, the ascending chain condition (ACC)
holds for the collection of divisorial integral ideals of R. (Recall an ideal I is
divisorial if and only if I = I ).

Remark. We could have expressed the second condition in terms of the DCC for
the collection of integral divisors (relative to the relation ≤).

Proposition 42. Every integrally closed Noetherian domain R is a Krull domain.
Hence every Dedekind domain, including any discrete valuation ring (DVR) or
principal ideal domain (PID), is a Krull domain.

Proof. Since R is an integrally closed Noetherian domain, it is automatically com-
pletely integrally closed (Proposition 4).

Every nonempty collection of ideals of a Noetherian ring has a maximal element
by the ascending chain condition, so every nonempty collection of divisorial ideals
must have a maximal element.

Proposition 43. Every integral divisor of a Krull domain R is the product of
irreducible divisors, where the empty product is defined to be the identity divisor [R].

Proof. Suppose there are exceptions and let S be the set of nonzero integral ideals
of the form I where [I] is an exception. Since R is a Krull domain, there is a
maximal element of S. Let I be the maximal such element of S, and let [I] be the
corresponding divisor.

Since [I] is an exception, [I] is not an irreducible divisor and [I] 6= [R]. Thus
there is a divisor [J ] where [J ] ≤ [I] but where [J ] 6= [I] and [J ] 6= [R] (Defini-
tion 10). Also, [I] = [J ][J ′] for some divisor [J ′] (Proposition 34). Thus [J ′] ≤ [I]
(Proposition 34). Observe that [J ′] 6= [I]; otherwise [J ][I] = [I], so by cancellation
(Theorem 25) [J ] = [R], a contradiction.

Since [J ] ≤ [I] and [J ] 6= [I] we have I ( J (Proposition 19 and Corollary 20).
Similarly I ( J ′. Thus [J ] and [J ′] are not exceptions by definition of S and
choice of [I]. This is a contradiction since [I] = [J ][J ′] would then be a product of
irreducible divisors.
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Theorem 44. Every integral divisor of a Krull domain R is uniquely the product
of prime divisors, where the empty product is defined to be the identity divisor [R]
and where uniqueness is up to order.

Proof. Existence of an irreducible factorization follows from the above proposition,
and this must be a prime factorization (Proposition 31). Uniqueness was established
in Proposition 41.

Krull domains are characterized by the unique factorization property for divi-
sors:

Theorem 45. Let R be an integral domain. Then R is a Krull domain if and only
if every integral divisor of R is uniquely the product of prime divisors, where the
empty product is defined to be the identity divisor [R] and where uniqueness is up
to order.

Proof. One direction was established in the previous theorem. So suppose unique
factorization of integral divisors holds. This yields a cancellation law for integral
divisors. It is straightforward to show that if the cancellation law holds for integral
divisors, it must hold for all divisors. Using Theorem 27 we conclude that R is
completely integrally closed. So, according to the definition of Krull domain, we
just need to establish the ACC for divisorial integral ideals.

By Proposition 41, the number of prime factors that occurs in the prime fac-
torization of a given divisor is independent on the actual factorization. So if I
is a nonzero integral ideal of R, let n(I) be the number of prime factors in any
factorization of the integral divisor [I].

Suppose I = I and J = J are divisorial integral ideals such that I ( J . We will
show that n(J) < n(I). To do so, first observe that [I] 6= [J ] since I 6= J and since I
and J are divisorial (Corollary 20). Since I ( J we have J ≤ I (Proposition 7). So
there is an integral divisor [J ′] such that [J ][J ′] = [I] (Proposition 34). If n(J ′) = 0
then [J ′] = [R] which implies [I] = [J ], a contradiction. So n(J ′) > 0. Finally,
since [J ][J ′] = [I], we have n(J) + n(J ′) = n(I) and so n(J) < n(I) as desired.

To show that R is a Krull domain it remains to show that if S is a nonempty
collection of divisorial integral ideals of R, there is a maximal element of S with
respect to inclusion. Let S be such a collection, and let I ∈ S be any element such
that n(I) is as small as possible. If J ∈ S is such that I ( J then n(J) < n(I),
which contradicts the choice of I. Thus I is a maximal element of S.

We can apply factorization of divisors to complete the classification of prime di-
visors started in the previous section (see Proposition 37 and Corollaries 39 and 40):

Proposition 46. Let p be a minimal prime ideal of a Krull domain R. Then [p]
is a prime divisor and p = p.

Proof. Let a ∈ p be a nonzero element and factor the divisor [aR] into prime divisors
(Theorem 44):

[aR] = [P1] · · · [Pk].

In particular, aR ≤ P1 · · ·Pk. If pi
def
= Pi then pi is a nonzero prime ideal (Proposi-

tion 32), and pi ∼ Pi (Proposition 21). Thus aR ≤ p1 · · · pk (Proposition 16). This
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implies that p1 · · · pk ⊆ aR (Proposition 19). Since aR is a principal ideal, aR = aR
(Proposition 18). Thus

p1 · · · pk ⊆ aR = aR ⊆ p.

Because p is a prime ideal, pi ⊆ p for some i. So p = pi since p is a minimal
prime ideal. So [p] = [Pi] (Proposition 21) and is a prime divisor. Thus p = p
(Proposition 37).

We now can restate Theorem 44 as follows:

Theorem 47. Let [I] be an integral divisor of a Krull domain R. Then there is a
finite sequence p1, . . . , pk of distinct minimal prime ideals such that

[I] = [p1]n1 · · · [pk]nk

For some n1, . . . , nk nonnegative integers. Given such a sequence p1, . . . , pk, the
exponents n1, . . . , nk are unique.

We can extend this to general divisors:

Theorem 48. Let [I] be a divisor of a Krull domain R. Then there is a finite
sequence p1, . . . , pk of distinct minimal prime ideals such that

[I] = [p1]n1 · · · [pk]nk

For some n1, . . . , nk ∈ Z. Given such a sequence p1, . . . , pk, the expo-
nents n1, . . . , nk are unique.

Proof. If I is a fractional ideal, then I is of the form (dR)−1J for some nonzero
integral ideals dR and J . This can be used to justify existence. Uniqueness is
straightforward given Proposition 41.

The sequence p1, . . . , pk given in the proceeding theorems is not quite unique
since we can make the following trivial modifications that do not affect the product:
(1) we can add minimal prime ideals to the sequence with corresponding exponents
zero, (2) similarly we can remove terms from the sequence if the corresponding
exponents are zero, and (3) we can rearrange the order of the sequence. These are
in some sense the only modifications:

Lemma 49. Suppose that p1, . . . , pk and q1, . . . , ql are two sequences of distinct
minimal prime ideals. Suppose

[p1]m1 · · · [pk]mk = [q1]n1 · · · [ql]nl

where each mi and ni is an integer. Then the sequences differ (up to order) only
in terms with exponent zero.

More precisely, if pi = qj then mi = nj. Furthermore, a prime p appears in the
first sequences as some pi with nonzero exponent mi 6= 0 if and only if it appears
in the second sequence as some qj with nonzero exponent nj 6= 0, and vice versa.

Proof. The idea is to use, if necessary, a third sequence of distinct minimal prime
ideals that incorporates every pi and qi. Then use the uniqueness of exponents for
this third sequence.
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7 Discrete valuations associated to irreducible divisors

We begin with some additional basic facts that hold in the context of a general
integral domain R:

Proposition 50. Let aR and bR be nonzero principal ideals of an integral do-
main R. Then aR ≤ bR if and only if a divides b in R.

Proposition 51. Let xR and yR be principal fractional ideals of an integral do-
main R. Then [xR] = [yR] if and only if xR = yR.

Proposition 52. Let I1 and I2 be fractional ideals of an integral domain. If J is
a fractional ideal then J ≤ I1 and J ≤ I2 if and only if J ≤ I1 + I2.

Proof. If J ≤ I1 and J ≤ I2 then I1 ⊆ J and I2 ⊆ J (Proposition 19). This implies
that I1 + I2 ⊆ J . Thus J ≤ I1 + I2 (Proposition 19).

The converse follows from the following observation: since Ii ⊆ I1 + I2 we
have I1 + I2 ≤ Ii. Thus if J ≤ I1 + I2 then J ≤ I1 and J ≤ I2 by transitivity.

Definition 14. Let p be a minimal prime ideal of a Krull domain R. Suppose I is
a fractional ideal of R with divisor factorization

[I] = [p1]n1 · · · [pk]nk .

Here p1, . . . , pk is a sequence of distinct minimal ideals that we assume includes p,
as pi, say. We define the valuation of I at p as follows:

vp(I)
def
= ni.

This is well-defined by Theorem 48 and Lemma 49.

Proposition 53. Let I and J be fractional ideals of a Krull domain R, and let p
be a minimal prime ideal of R. Then

vp(IJ) = vp(I) + vp(J).

Proposition 54. Let I be a fractional ideals of a Krull domain R. Then I is an
integral ideal if and only if vp(I) ≥ 0 for all minimal prime ideals p of R.

Proposition 55. Let I be a fractional ideals of a Krull domain R. Then vp(I) 6= 0
for only finitely many minimal prime ideals p of R.

Proposition 56. Let I, J be fractional ideals of a Krull domain R. Then [I] = [J ]
if and only if vp(I) = vp(J) for all minimal prime ideals p of R.

Proposition 57. Let I, J be fractional ideals of a Krull domain R. Then I ≤ J if
and only if vp(I) ≤ vp(J) for all minimal prime ideals p of R.

Proof. If I ≤ J then [I][I ′] = [J ] for some integral ideal I ′ (Proposition 33). This
means vp(I) + vp(I ′) = vp(J) (Proposition 53), and the result follows (Proposi-
tion 54).

Conversely suppose vp(I) ≤ vp(J) for all minimal prime ideals p of R. We can
replace I and J with equivalent ideals (Propositions 16 and 56). In particular, we
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can replace I and J with products of powers of minimal prime ideals. In that case
we get II ′ = J at the level of fractional ideals for some integral ideal I ′. So J ⊆ I
and thus I ≤ J (Proposition 7).

Proposition 58. Let I1, I2 be fractional ideals of a Krull domain R. Then

vp(I1 + I2) = min{vp(I1), vp(I2)}

for all minimal prime ideals p of R.

Proof. Since I1 ⊆ I1+I2 we have I1+I2 ≤ I1 (Proposition 7). So vp(I1+I2) ≤ vp(I1)
for each minimal prime ideal p (previous proposition). Similarly, for all minimal
prime ideals p of R we have vp(I1 + I2) ≤ vp(I2) so

vp(I1 + I2) ≤ min{vp(I1), vp(I2)}.

By using products of minimal prime ideals, we can produce a fractional ideal J
such that vp(J) = min{vp(I1), vp(I2)} for all minimal prime ideals p of R. By the
above proposition we have J ≤ I1 and J ≤ I2. So by Proposition 52, J ≤ I1 + I2.
Thus (by the previous proposition) for all minimal prime ideals p of R

min{vp(I1), vp(I2)} = vp(J) ≤ vp(I1 + I2).

Proposition 59. Let I be a nonzero integral ideal of a Krull domain R and let p0
be a minimal prime ideal of R. Then the following are equivalent:

1. I ⊆ p0

2. p0 ≤ I

3. vp0(I) ≥ 1.

Proof. The implication (1) =⇒ (2) follows from Proposition 7. Suppose p0 ≤ I.
Then I ⊆ p0 (Proposition 19) and p0 = p0 (Proposition 46). So (2) =⇒ (1).

If p0 ≤ I then 1 = vp0(p0) ≤ vp0(I) (Proposition 57), so (2) =⇒ (3).
If vp0(I) ≥ 1 then vp(p0) ≤ vp(I) for all minimal prime ideals p of R. This

implies p0 ≤ I (Proposition 57), so (3) =⇒ (2).

Corollary 60. Suppose a ∈ R is a nonzero element of a Krull domain R. If a is
not a unit of R then a ∈ p for some minimal prime ideal p of R.

Proof. Since a is not a unit, aR 6= R. So [aR] 6= [R] (Proposition 51). This
means that vp(aR) ≥ 1 for some minimal prime ideal p of R (Proposition 54 and
Proposition 56). Thus aR ⊆ p by the above proposition. So a ∈ p as desired.

Corollary 61. Suppose a ∈ R is a nonzero element of a Krull domain R. Then a
is contained in only a finite number of minimal prime ideals.

Proof. Suppose that a ∈ p where p is a minimal prime ideal. So aR ⊆ p and by the
above proposition vp(aR) ≥ 1. There can only be a finite number of such minimal
prime ideals p (Proposition 55).
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Now we consider valuations at the level of elements.

Definition 15. Let R be an Krull domain with field of fractions K. If x ∈ K×
and if p is a minimal prime of R then

vp(x)
def
= vp(xR).

When needed, we define vp(0) to be ∞.

Lemma 62. Let R be a Krull domain and let p be a minimal prime of R. Then
there is an element π ∈ R such that vp(π) = 1.

Proof. Since [p] 6= [R] (Proposition 46) and since the divisors form a group (Theo-
rem 25), we have [p2] 6= [p]. In particular, p2 6= p (Corollary 20).

Since p2 ⊆ p we have [p] ≤ [p2] (Proposition 7) so p2 ⊆ p (Proposition 19).
Since p2 ( p, there is an element π ∈ pr p2.

Since πR ⊆ p we have p ≤ πR (Proposition 19). So by Proposition 57

1 = vp(p) ≤ vp(πR) = vp(π).

Suppose that vp(π) ≥ 2. In this case vq(p2) ≤ vq(πR) for all minimal primes q

of R, which means that p2 ≤ aR (Proposition 57). Thus πR ⊆ p2 (Proposition 19).
This means π ∈ p2 which contradicts the choice of π. We conclude that vp(π) = 1
as desired.

Proposition 63. Let R be a Krull domain with field of fractions K. Let p be a
minimal prime of R. Then the function vp : K× → Z is a discrete valuation of K.

Proof. The identity
vp(xy) = vp(x) + vp(y)

follows from Proposition 53. Suppose x, y ∈ K× are such that x+ y 6= 0. Then we
have the inclusion (x+y)R ⊆ xR+yR, and so xR+yR ≤ (x+y)R (Proposition 7).
In particular, vp(x+ y) ≥ vp (xR+ yR) (Proposition 57). By Proposition 58,

vp(xR+ yR) = min{vp(xR), vp(yR)},

so
vp(x+ y) ≥ min{vp(x), vp(y)}.

Finally we need to show that the function vp : K× → Z is surjective. Observe
that the image is a subgroup of Z since, as established above, vp is a group homo-
morphism. By Lemma 62, 1 is in the image. Thus the image of vp is all of Z.

From Proposition 54 we get the following:

Proposition 64. Let a be a nonzero element of the fraction field of a Krull do-
main R. Then a ∈ R if and only if vp(a) ≥ 0 for all minimal primes p of R.

Proposition 65. Let a be a nonzero element of a Krull domain R and let p be a
minimal prime ideal of R. Then vp(a) ≥ 1 if and only if a ∈ p.

Proof. This follows from Proposition 59.
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Proposition 66. Let x be a nonzero element of the function field of a Krull do-
main R. Then vp(x) 6= 0 for only a finite number of minimal prime ideals p of R.

Proof. Write x as a/b with a, b ∈ R. So vp(x) = vp(a) − vp(b) for all minimal
prime ideals p of R. The result follows from Corollary 61, Proposition 64, and
Proposition 65 applied to a and b.

8 Localization at minimal primes in Krull domains

Let R be a Krull domain. Let p be a minimal prime ideal of R and let vp be the
valuation associated with p. Recall that every ideal of the localization Rp is of the
form IRp where I is an ideal of R. Let IRp be such an ideal, and assume it is not
the zero ideal. By the unique factorization (Theorem 48) we can write

[I] = [p1]n1 · · · [pk]nk

where p1, . . . , pk is a sequence of distinct minimal prime ideals of R and where
each ni ≥ 0. We can assume that the sequence is chosen so that p1 is p. We can ex-
pand this factorization of divisors into a factorization of ideals (see Proposition 35):

II ′ = p1
n1 · · · pknkJ ′

where I ′ ∼ J ′ ∼ R. Note that, vp(I ′) = vp(J ′) = vp(R) = 0. Also vp(pi) = 0 unless
the index i is 1.

In general, if J is a nonzero ideal of R such that vp(J) = 0 then J is not a
subset of p (Proposition 59); for such J there is an element s ∈ J where s 6∈ p, and
so JRp is the identity ideal Rp. In particular, from

(IRp)(I ′Rp) = (p1Rp)n1 · · · (pkRp)nk(J ′Rp)

we get
(IRp)Rp = (pRp)n1(Rp)n2 · · · (Rp)nkRp.

Thus IRp = (pRp)n1 . Observe that n1 = vp(I). So we have proved the following:

Lemma 67. Let R be a Krull domain and let p be a minimal prime ideal of R.
If I is a nonzero ideal of R then

IRp = (pRp)vp(I).

In particular, every nonzero ideal of the localization Rp is of the form (pRp)n for
some n ≥ 0.

Theorem 68. Let R be a Krull domain and let p be a minimal prime ideal of R.
Then Rp is a discrete valuation ring (DVR).

Proof. Let π ∈ R be such that vp(π) = 1 (Lemma 62). By the above lemma, πRp is
equal to the maximal ideal pRp. The maximal ideal pRp is principal, which implies
that (pRp)n is principal for all n ≥ 0. By the above lemma, every ideal of Rp is
principal.

Since R is a local PID, it must be a DVR.
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Proposition 69. Let R be a Krull domain with field of fractions K. Let p be a
minimal prime ideal of R. Then the valuation ring of vp is the localization Rp of R
at the prime ideal p.

Proof. We begin by showing that Rp is contained in Ovp where Ovp is the valuation
ring of vp.

If a ∈ R is nonzero then vp(a) ≥ 0 (Proposition 64) and vp(a) ≥ 1 if and only
if a ∈ p (Proposition 65). So if s ∈ R r p then vp(s) = 0. Suppose a/s ∈ Rp

with a, s ∈ R and s 6∈ p then

vp(a/s) = vp(a)− vp(s) = vp(a)− 0 ≥ 0.

So a/s is in the valuation ring Ovp .
This givesRp ⊆ Ovp . Equality now follows from the fact thatRp is a DVR. (This

is a general principal, but there is an argument adapted to the current situation.
Since it is short we give it here. Suppose x ∈ Ovp is nonzero. Either x or its
multiplicative inverse y are in Rp since Rp is a DVR. If y ∈ Rp then y ∈ Ovp

by the above inclusion. So y is a unit of Ovp . Thus vp(y) = 0, which implies
that y 6∈ pRp so y is a unit of the local ring Rp. Thus x ∈ Rp if y ∈ Rp. So in any
case x ∈ Rp.)

Corollary 70. Let R be a Krull domain with fraction field K. Suppose R is not
all of K. Then

R =
⋂

p minimal

Rp

where the intersection is indexed by the set of minimal prime ideals of R.

Proof. One inclusion is automatic, so let a be a nonzero element in the right hand
side. Then vp(a) ≥ 0 for all minimal primes p of R. Hence a ∈ R (Proposition 64).

9 Bounds for the divisibility relation

We start with a fairly abstract but simple situation. Let X be a set equipped with
a relation ≤. Given a subset S ⊆ X, define the lower bound set L(S) and upper
bound set U(S) as follows:

L(S) = {x ∈ X | x ≤ s for all s ∈ S}, U(S) = {x ∈ X | s ≤ x for all s ∈ S}.

Lemma 71. Let S be a subset of X. Then S ⊆ L(U(S)) and S ⊆ U(L(S)).

Proof. Let a ∈ S. Suppose b ∈ U(S). Then a ≤ b by definition of U(S). This holds
for all b ∈ U(S). So a ∈ L(U(S)). A similar arguments shows S ⊆ L(U(S)).

We observe that L and U are order reversing:

Lemma 72. Let S and T be subsets of X. If S ⊆ T then

L(T ) ⊆ L(S) and U(T ) ⊆ U(S).
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Lemma 73. Let S bs a subset of X. Then

L(S) = L(U(L(S))) and U(S) = U(L(U(S))).

Proof. We prove the first statement. The second is similar.
The inclusion L(S) ⊆ L(U(L(S))) is a special case of Lemma 71. Also by

Lemma 71, S ⊆ U(L(S)). Thus L(U(L(S))) ⊆ L(S) by Lemma 72.

We can use either lower bounds or upper bounds to define an induced relation
on the power set of X. Here we will just consider the induced relation associated
to lower bounds since that is what is used in the theory of divisors: if S and T are
subsets of X, then S ≤ T is defined to mean that L(S) ⊆ L(T ). In this situation
we define the closure of S as follows:

S
def
= U(L(S)).

We note that S ⊆ S and S = S holds for all subsets S of X. We call sets of the
form S closed subsets of X, and we call S the closure of S. We note that a subset S
of X is closed if and only if it is of the form U(T ) for some subset T . Also, the
following are equivalent by the above lemmas:

1. S ≤ T , in other words L(S) ⊆ L(T ).

2. T ⊆ S.

3. T ⊆ S.

Now we specialize this to the situation that we really care about, the divisi-
bility relation in an integral domain. Let R be an integral domain and let K be
the fraction field of R. We specialize to the case where X = K and where ≤ is
divisibility: x ≤ y means y = ax for some a ∈ R.

Lemma 74. Suppose x, y ∈ K. Then the following are equivalent:

1. x ≤ y.

2. y ∈ xR.

3. yR ⊆ xR.

Observe that x ≤ 0 for all x ∈ K, so 0 ∈ U(S) for all S. Recall that a subset
of X = K is closed if and only if it is of the form U(S), so 0 is an element of any
closed set. Observe that U(∅) = K. If R 6= K then K is not a fractional ideal, so
the following lemma shows that U(S) = K only when S = ∅.

Lemma 75. Let S ⊆ K be nonempty. Then

U(S) =
⋂
x∈S

xR.

In particular, U(S) is a R-submodule of K, and U(S) is either the zero module or
a fractional ideal of R.
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Lemma 76. Let S be a subset of K. Suppose x ∈ K, then x ∈ L(S) if and only
if S ⊆ xR. In particular, if L(S) is nonempty then

S = U(L(S)) =
⋂

x∈L(S)

xR =
⋂

S⊆xR

xR

A consequence of the first assertion of the above lemma is that an R-submodule I
of K is a fractional ideal if and only if L(I) is nonempty and does not contain 0.
In particular, the above formula for S applies to fractional ideals S = I and agrees
with the earlier definition of I (Definition 7). We can also use these ideas to check
that the closure of a fractional ideal is a fractional ideal (as in Proposition 18): if I
is a fractional ideal then L(I) is nonempty and does not contain 0, and since

L
(
I
)

= L(U(L(I))) = L(I)

the same is true of L( I ). So I must also be a fractional ideal. Recall that the
closure of a fractional ideal is called a divisorial ideal (Definition 8). In other
words, a divisorial ideal is a closed fractional ideal.

Now we go back to the abstract setting of a relation ≤ on a set X. We suppose
that there is a second relation ≤′ on X such that the following holds for all x, y ∈ X:

if x ≤ y then x ≤′ y.

For each subset S of X we define L′(S) and U ′(S) using the relation ≤′. Observe
that L(S) ⊆ L′(S) and U(S) ⊆ U ′(S) for any subset S of X.

Lemma 77. Let S and T be subsets of X. If S ⊆ T then U ′(L(S)) ⊆ U ′(L(T )).

For closed subsets we get the following:

Lemma 78. If S is a subset of X then let Φ(S) be U ′(L(S)). Then S ⊆ S ⊆ Φ(S)
where S = U(L(S)) is the closure with respect to ≤.

The function Φ maps the collection of closed subsets of X (under ≤) to the
collection of closed subsets of X (under ≤′). This function Φ is order preserving:
if S ⊆ T then Φ(S) ⊆ Φ(T ), or equivalently if T ≤ S then Φ(T ) ≤′ Φ(S).

An important example of the above situation is where R and R′ are integral
domains with common fraction field K and where R ⊆ R′. In this situation X = K,
the first relation ≤ is the divisibility relation for R, and the second relation ≤′ is the
divisibility relation for R′. Observe that this situation conforms to the requirement
that x ≤ y implies x ≤′ y since y ∈ xR implies y ∈ xR′.

Lemma 79. Let R and R′ be integral domains with common fraction field K.
Assume R ⊆ R′. If I is a divisorial ideal of R then let Φ(I) be U ′(L(I)). Then Φ(I)
is a divisorial ideal of R′.

Proof. By Lemma 78, Φ(I) is closed with respect to ≤′. Since I is a fractional
ideal, L(I) is nonempty. So Φ(I) is either the zero module or a fractional ideal
(Lemma 75). But I ⊆ Φ(I) (Lemma 78), so Φ(I) is not the zero ideal and so must
be a divisorial ideal.
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The map behaves as expected for principal ideals:

Lemma 80. Let R and R′ be integral domains with common fraction field K.
Assume R ⊆ R′. If x ∈ K× then

Φ(xR)
def
= U ′(L(xR)) = xR′.

Proof. Note that x ∈ L(xR). So if y ∈ U ′(L(xR)) then x ≤′ y. In other words,
if y ∈ Φ(xR) then y ∈ xR′, so Φ(xR) ⊆ xR′. On the other hand, xR ⊆ Φ(xR)
(Lemma 78). So x ∈ Φ(xR), and since Φ(xR) is a fractional ideal this implies the
other inclusion xR′ ⊆ Φ(xR).

Corollary 81. If I is an integral divisorial ideal then Φ(I) = U ′(L(I)) is an integral
divisorial divisor of R′.

Proof. If I is an integral divisorial ideal then I ⊆ R. So Φ(I) ⊆ Φ(R) = R′. Now
use Lemma 79.

Again we return to the abstract setting of a relation ≤ on a set X. This time
we suppose that there is also a nonempty family of relations (≤i)i∈I on X such
that the following holds for all x, y ∈ X:

x ≤ y if and only if x ≤i y for each i ∈ I.

For each i ∈ I and each subset S of X we define Li(S) and Ui(S) using the
relation ≤i. Observe that

L(S) =
⋂
i∈I

Li(S), and U(S) =
⋂
i∈I

Ui(S).

Lemma 82. Let S = S and T = T be closed subsets of X. Then S ⊆ T if and
only

Ui(L(S)) ⊆ Ui(L(T ))

for each i ∈ I.

Proof. If S ⊆ T then L(T ) ⊆ L(S). Thus Ui(L(S)) ⊆ Ui(L(T )) for each i ∈ I.
Conversely if Ui(L(S)) ⊆ Ui(L(T )) for each i ∈ I, then by taking the intersec-

tion we get

S = S = U(L(S)) =
⋂
i∈I

Ui(L(S)) ⊆
⋂
i∈I

Ui(L(T )) = U(L(T )) = T = T.

We apply this result to the situation where R is an integral domain with fraction
field K such that R =

⋂
Ri where (Ri)i∈I is a nonempty family of subrings of K.

In this situation, let X = K, let ≤ be the divisibility relation for R: x ≤ y if and
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only if y ∈ xR, and for each i ∈ I let ≤i be the divisibility relation for Ri: x ≤i y
if and only if y ∈ xRi. Observe the following for each x, y ∈ K:

x ≤ y if and only if x ≤i y for each i ∈ I.

For each i ∈ I we have, as before, an order preserving function Φi from the set of
divisorial ideals of R to the set of divisorial ideals of Ri given by the rule

Φi(I)
def
= Ui(L(I)).

This map sends integral divisorial ideals of R to integral divisorial ideals of Ri

(Corollary 81). In the current situation, we can rephrase Lemma 82:

Lemma 83. Let I and J be divisorial ideals of R. Then I ⊆ J if and only

Φi(I) ⊆ Φi(J)

for each i ∈ I.

Remark. By switching order, we can rephrase the above in terms of the ≤ relation
on divisorial ideals: J ≤ I if and only if Φi(J) ≤ Φi(I) in Ri for each i ∈ I.

The main payoff for the constructions in this section is the following:

Proposition 84. Let R be an integral domain with fraction field K. Let (Ri)i∈I
be a nonempty family of subrings of K such that (i)

R =
⋂
i∈I

Ri,

(ii) for every nonzero a ∈ R there are at most a finite number of i ∈ I such that a
is not a unit of Ri, and (iii) the ACC holds for the collection of integral divisorial
ideals of Ri for each i ∈ I. Then the ACC holds for the collection of integral
divisorial ideals of R.

Proof. Consider an infinite ascending chain of integral divisorial ideals of R

Iu ⊆ Iu+1 ⊆ Iu+2 ⊆ · · · .

Our goal is to show that this chain stabilizes. Let a ∈ Iu be nonzero. Then aR is
an integral divisorial ideal and aR ⊆ Ij for all Ij in the chain. By assumption there
is a finite subset I0 of I such that for i 6∈ I0 the element a is a unit in Ri, which
means aRi = Ri when i 6∈ I0.

For each i ∈ I, let Φi be as above. For each i 6∈ I0 and each Ij we have
that aR ⊆ Ij ⊆ R and aRi = Ri. So by Lemma 80 and Lemma 78,

Ri = aRi = Φi(aR) ⊆ Φ(Ij) ⊆ Φi(R) = Ri.

Thus for i 6∈ I0 the chain (Φi(Ij)) is the constant chain. We set Ni = u in this case.
For each index i in the finite set I0, we get a chain of integral divisorial ideal

of Ri (Lemma 78, Corollary 81):

Φi(Iu) ⊆ Φi(Iu+1) ⊆ Φi(Iu+2) ⊆ · · · .
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By the ACC assumption for Ri, this chain stabilizes and so is constant for j ≥ Ni

for some index Ni.
Let N be the maximum of the Ni with i ∈ I. If j ≥ N then Φi(Ij) = Φi(Ij+1)

for all i ∈ I. Thus Ij = Ij+1 by Lemma 83. This shows that the chain (Ij)
stabilizes, confirming the ACC for integral divisorial ideals.

Corollary 85. Let R be an integral domain with fraction field K. Let (Ri)i∈I be
a nonempty family of subrings of K such that (i)

R =
⋂
i∈I

Ri,

(ii) for every nonzero a ∈ R there are at most a finite number of i ∈ I such that a
is not a unit of Ri, and (iii) each Ri is a Krull domain. Then R is a Krull domain.

Proof. A Krull domain is an integral domain R that satisfies the following properties
(Definition 13):

1. R is completely integrally closed.

2. The ACC holds for the collection of divisorial integral ideals of R.

The first property for R holds since R is the intersection of completely integrally
closed domains (Proposition 5). The second property for R holds by the previous
proposition.

10 Local characterizations of Krull domains

We define a Krull domain (Definition 13) as an integral domain R that satisfies the
following properties:

1. R is completely integrally closed.

2. The ACC holds for the collection of divisorial integral ideals of R.

We established a second characterization of a Krull domain as an integral domain
where each integral divisor has a unique factorization into prime divisors (Theo-
rem 45). In this section we give two other characterizations. We apply the last of
these to study of localizations of a Krull domain.

Theorem 86. Let R be an integral domain with fraction field K, and assume
that R is not all of K. Then R is a Krull domain if and only if (i)

R =
⋂

p minimal

Rp

where the intersection is indexed by the set of minimal prime ideals of R, (ii) for
each minimal prime p the localization Rp is a DVR, and (iii) each nonzero a ∈ R
is contained in only a finite number of minimal prime ideals of R.
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Proof. Suppose R is a Krull domain. Then the first condition holds by Corol-
lary 70. The second condition holds by Theorem 68. The third condition holds by
Corollary 61.

Now suppose each of the three conditions holds. Observe that each Rp is a Krull
domain since DVRs are Krull domains (Proposition 42). Observe that if a 6∈ p
then a is a unit in Rp. Thus R is a Krull domain by Corollary 85.

We can extend this characterization as follows:

Theorem 87. Let R be an integral domain with field of fractions K, and assume
that R is not all of K. Then R is a Krull domain if and only if there is a nonempty
family (Ri)i∈I of DVRs contained in K such that (i)

R =
⋂
i∈I

Ri,

and (ii) each nonzero a ∈ R is a non-unit of Ri for only a finite number of i ∈ I.

Proof. Suppose both of these conditions holds. Observe that each Ri is a Krull
domain since DVRs are Krull domains (Proposition 42). Thus R is a Krull domain
by Corollary 85.

Conversely, if R is a Krull domain, let I be the set of all minimal prime ideals
of R. For each i = p ∈ I let Ri be the localization Rp. By the preceding theorem,
this gives a family of DVRs whose intersection is R. Moreover, each nonzero a ∈ R
is contained in only a finite number of minimal prime ideals of R (Corollary 61), so
each such a is a non-unit of Rp for only a finite number of p ∈ I.

Remark. If the above, if we define the intersection of an empty family to be K then
we can include the case where R = K is a field. We adopt this convention in the
following proposition:

Proposition 88. Let R be a Krull domain with field of fractions K. Assume that R
is not a field. Suppose (Ri)i∈I is a nonempty family of DVRs contained in K such
that (i)

R =
⋂
i∈I

Ri,

and (ii) each nonzero a ∈ R is a non-unit of Ri for only a finite number of i ∈ I.
If S is a multiplicative system of R, then let IS be the collection of i ∈ I such

that S is contained in the units of Ri. Then

S−1R =
⋂
i∈IS

Ri.

Proof. Observe that if i ∈ IS then S−1R ⊆ Ri. So S−1R ⊆
⋂
Ri where the

intersection is over i ∈ IS .
So suppose x is a nonzero element in this intersection: x ∈ Ri for all i ∈ IS .

For each i ∈ I let vi be the discrete valuation associated with Ri. So vi(x) ≥ 0
for all i ∈ IS . Let Ex be the set of indices in I such that vi(x) < 0. Observe that
if i ∈ Ex then i 6∈ IS , and so S must contain an element si such that vi(si) > 0.
Note that Ex must be a finite set. To verify this write x as a/b with a, b ∈ R, and
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note that by assumption a and b, and hence x, are units of Ri for all but a finite
number of i ∈ I.

Let s be the product of si for i ∈ Ex (where s = 1 if Ex is empty). Observe
that there is a positive k such that vi(s

kx) ≥ 0 for all i ∈ Ex. Observe that, in
fact, vi(s

kx) ≥ 0 for all i ∈ I. Thus a = skx ∈ R. So x = a/sk ∈ S−1R.

Corollary 89. Let R be a Krull domain and let S be a multiplicative system of R.
Then S−1R is a Krull domain.

Proof. Apply Theorem 87 to the family (Ri)i∈IS of the above proposition. (If this
is an empty family, then R = K. So R is a field in this case, which we consider to
be a Krull domain).

11 Sequel

There are several other interesting results concerning Krull domains that are worth
exploring at this point. I plan to update this essay with additional results at a later
date, or to write a separate sequel.
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