Definition. If \(f : V \to V' \) is a linear map between vector spaces (or modules), then the kernel of \(f \) or the null-space of \(f \) is the set \(\{ v \in V \mid f(v) = 0 \} \).

Problems 1–4: Null-spaces (or kernels). Let \(f : V \to V' \) be a linear map between vector spaces (or modules).
1. Show that the kernel of \(f \) is a subspace of \(V \).
2. Show \(f \) is injective (one-to-one) if and only if the kernel of \(f \) is equal to the zero subspace.
3. Show that if \(u_1, \ldots, u_n \) is a linearly independent sequence of vector of \(V_1 \), and if \(f \) is injective, then \(f(u_1), \ldots, f(u_n) \) is a linearly independent sequence of vectors of \(V_2 \). (Optional: does this work for infinite families?)
4. Give a counter-example to the above when \(f \) is not injective. (Hint look at \(F^3 \to F^2 \) defined by the rule \((x_1, x_2, x_3) \mapsto (x_1, x_2))\).

Definition. If \(f : V \to V' \) is a linear map between vector spaces (or modules), then the image of \(f \) or the range of \(f \) is the set \(W \) of vectors in \(V' \) of the form \(f(v) \) with \(v \in V \).

Problems 5–7: Image spaces (or ranges). Let \(f : V \to V' \) be a linear map between vector spaces (or modules).
5. Show that the image of \(f \) is a subspace of \(V' \). Observe that \(f \) is surjective (onto) if and only if the image of \(f \) is equal to all of \(V' \).
6. Show that if \(u_1, \ldots, u_n \) span \(V_1 \), and if \(f \) is surjective, then \(f(u_1), \ldots, f(u_n) \) spans \(V_2 \). (Optional: does this work for infinite spanning sets?)
7. Give a counter-example to the above when \(f \) is not surjective. (Hint look at \(F^2 \to F^3 \) defined by the rule \((x_1, x_2) \mapsto (x_1, x_2, 0))\).

Problems 8–11: Isomorphisms. In mathematics, an isomorphism is a homomorphism that has an inverse homomorphism. In algebra, this is usually equivalent to requiring that the homomorphism be bijective (one-to-one and onto). In topology, bijective is not enough. We will show that in linear algebra it is enough.

Definition. If \(f : A \to B \) and \(g : B \to A \) are functions such that \(f \circ g = \text{id}_B \) and \(g \circ f = \text{id}_A \), then we say that \(f \) and \(g \) are inverse functions.

8. (Review?) Show that a function \(f \) has an inverse function if and only if \(f \) is injective (one-to-one) and surjective (onto). Functions that are both injective and surjective are bijective.

Definition. If \(f : V \to V' \) is a homomorphism that has an inverse function \(f^{-1} : V' \to V \), and if the inverse function \(f^{-1} \) is also a homomorphism, then \(f \) is called an isomorphism. If there is an isomorphism \(V \to V' \), then \(V \) and \(V' \) are said to be isomorphic.

9. Show that all isomorphisms are bijective homomorphisms.
10. Show that all bijective homomorphisms are isomorphisms, proving the following theorem. (Hint: when showing \(f^{-1}(w_1 + w_2) = f^{-1}(w_1) + f^{-1}(w_2) \), for example, let \(u_1 = f^{-1}(w_1) \) and \(u_2 = f^{-1}(w_2) \) which implies \(w_1 = f(u_1) \) and \(w_2 = f(u_2) \). Work from the left hand side to the right hand side using these substitutions.)

Theorem. A function \(f : V \to V' \) between vector spaces (or \(R \)-modules) is an isomorphism if and only if (i) it is a homomorphism, (ii) it is injective (one-to-one), and (iii) it is surjective (onto).

11. Show that if \(u_1, \ldots, u_n \) is a basis for \(V_1 \) and if \(f : V_1 \to V_2 \) is an isomorphism, then \(f(u_1), \ldots, f(u_n) \) is a basis for \(V_2 \). Conclude that if \(V_1 \) is a finite dimensional vector space of dimension \(n \), and if \(V_2 \) is isomorphic to \(V_2 \), then \(V_2 \) is a finite dimensional vector space of the same dimension \(n \). (Optional: does this work for infinite basis? Does this work for modules?)