Problems 1–2: Transpose. Let $A, B \in M_{m,n}(R)$ where R is a commutative ring. Recall the definition of A^T from LA16:

Definition (Transpose). Let $A = [a_{ij}]$ be an m by n matrix. Then the transpose of A, written A^T, is the n by m matrix with (i, j) entry a'_{ij} given by $a'_{ij} = a_{ji}$.

1. Show that $(A + B)^T = A^T + B^T$ and $(AB)^T = A^T B^T$ whenever the product AB is defined. Thus the transpose operator defines an anti-isomorphism $M_n(R) \to M_n(R)$ which is its own inverse. (An anti-homomorphism $f : R_1 \to R_2$ between rings is a function such that $f(a + b) = f(a) + f(b)$ and $f(ab) = f(b)f(a)$ and $f(1) = 1$).

Problems 3–4: Cofactors (Optional). Cofactors occurred in the formula for inverses from LA17 and LA18. Here we discuss a shortcut for computing them (which is the method given in most texts). Let R be a commutative ring and let $V = R^n$. Let $\Lambda : V^n \to R$ be the normalized alternating n-linear functional. Then the (i,j)th cofactor of a matrix $A \in M_n(R)$ is defined to be $\Lambda(w_1, \ldots, w_{i-1}, e_j, w_{i+1}, \ldots, w_n)$ where w_1, \ldots, w_n are the columns of A.

3. Consider the matrix A' obtained by replacing the first column of $A \in M_n(R)$ by e_1. Let A_{11} be the matrix obtained by removing the first row and first column of A. Show that in the determinant formula for A', you only need to sum over the permutations $\sigma \in S_n$ that fix 1. Show that the set of permutations in $\sigma \in S_n$ that fix 1 forms a subgroup $H \subseteq S_n$ isomorphic to S_{n-1}. Compare the $(n-1)!$ terms of det A_{11} with the $(n-1)!$ terms of det A' corresponding to $\sigma \in H$. Show that $\det A' = \det A_{11}$.

4. Let $A = [a_{ij}]$. Use the determinant formula to show that the (i,j)th cofactor is equal to $(-1)^{i+j} \det A_{ji}$ where A_{ji} is the $n-1$ by $n-1$ matrix obtained by removing the jth row and the ith column. Hint: permute the rows and columns of A so that the new matrix A' has first column equal to e_1, and so that when you remove the first row and column you are left with A_{ji}. Show that $\det A' = \det A_{ji}$.

Problems 5–8: Row Rank and Column Rank. Assume that $R = F$ is a field and that $A \in M_{m,n}(F)$ is an m by n matrix. The dimension of the span of the columns vectors of A is called the column rank of A. The dimension of the span of the row vectors is called the row rank of A. Our goal is to show that the column rank equals the row rank.

5. Recall the definition of rank from LA10. If A is the matrix of a linear map $f : F^n \to F^m$, show that the rank of f is the column rank of A. Show that the column rank is at most the minimum of m and n.

6. Show that if $B \in M_n(F)$ is invertible, then AB and A have the same column ranks. Show that if $C \in M_n$ is invertible, then CA and A have the same column ranks. Using transposes, show the same holds for row ranks. Hint: B and C are matrices of isomorphisms. For example, if $A = \text{mat}(f)$ and $C = \text{mat}(\gamma)$, then show that the image $(\gamma \circ f)(F^n)$ is isomorphic to the image $f(F^m)$.

7. Suppose that $A = [a_{ij}]$ is such that (i) if $i \neq j$ then $a_{ij} = 0$, and (ii) for each i, either $a_{ii} = 1$ or $a_{ii} = 0$. Show that the column rank of A and the row rank of A are equal. Show that the rank is the number of i such that $a_{ii} = 1$.

8. Using row and column operations, show that there is an invertible matrix $B \in M_n(F)$ and an invertible matrix $C \in M_m(F)$ such that CAB is a matrix $A' \in M_{m,n}(F)$ as in problem 7. Prove the following:

Theorem. Let F be a field and $A \in M_{m,n}(F)$ a matrix. Then the row rank of A is equal to the column rank of A. This rank is at most the minimum of m and n.

Remark. The rank of a matrix is defined to be either the row or the column rank: since they are equal, it doesn’t matter which we choose. A matrix in $M_{m,n}(F)$ has maximal rank if its rank is exactly the minimum of m and n. So for square matrices, maximal rank means invertible (or non-singular). There is a sense that a random matrix in $M_{m,n}(\mathbb{R})$ has maximal rank.

9. Let p be a prime number. How many matrices are in the ring $M_2(\mathbb{Z}_p)$? How many are invertible? In other words, what is the size of $GL_2(\mathbb{F}_p)$? What is the probability that a random matrix in $M_2(\mathbb{Z}_p)$ is invertible? What happens to this probability as p grows? Optional: generalize to $n > 2$.

LA 19

Linear Algebra (Spring 2005, Prof. Aitken).

April 14, 2005