Theorem (Inverse formula: version 2). Let R be a commutative ring and let $V = R^n$. Let $\Lambda : V^n \to R$ be the normalized alternating n-linear functional. Then if A is a matrix in $M_n(R)$ whose determinant is a unit in R, then A is invertible. The inverse of A is $B = [b_{ij}]$ where

$$b_{ij} = (\det A)^{-1} \Lambda (w_1, \ldots, w_{i-1}, e_j, w_{i+1}, \ldots, w_n)$$

where w_j is the jth column of A and e_j is in the ith slot.

Corollary. Let R be a commutative ring. Then $A \in M_n(R)$ is invertible if and only if $\det A$ is a unit in R.

1. Use LA17 to justify these results when R is a field F, or a subring of a field F. For example, they hold for $R = \mathbb{Z}$ (and any other integral domain: a ring is a subring of a field if and only if it is an integral domain). The above formula is closely related to the traditional formula for the adjoint matrix in terms of minors (and/or cofactors).

Problems 2–11: Generalizing to all commutative R. We want to prove the above theorem and corollary for general commutative rings such as $R = \mathbb{Z}_N$ where N is composite. (Problems 2–9 are optional).

2. To prove this theorem let $b'_{kj} = \Lambda (w_1, \ldots, w_{k-1}, e_j, w_{k+1}, \ldots, w_n)$ and let $A = [a_{ij}]$. Observe that $w_k = \sum_{j=1}^{n} a_{jk} e_j$ and

$$\det A = \Lambda (w_1, \ldots, w_{k-1}, w_k, w_{k+1}, \ldots, w_n) = \sum_{j=1}^{n} a_{jk} \Lambda (w_1, \ldots, w_{k-1}, e_j, w_{k+1}, \ldots, w_n) = \sum_{j=1}^{n} b'_{kj} a_{jk}.$$

3. Conclude that the (k, k)th term of the product $B'A$ is equal to $\det A$. Here $B' = [b'_{ij}]$.

4. Now suppose that $k \neq l$. Then $\Lambda (w_1, \ldots, w_{k-1}, w_l, w_{k+1}, \ldots, w_n) = 0$ and $w_l = \sum_{j=1}^{n} a_{jl} e_j$. So

$$0 = \Lambda (w_1, \ldots, w_{k-1}, w_l, w_{k+1}, \ldots, w_n) = \sum_{j=1}^{n} a_{jl} \Lambda (w_1, \ldots, w_{k-1}, e_j, w_{k+1}, \ldots, w_n) = \sum_{j=1}^{n} b'_{kj} a_{jl}.$$

5. Conclude that if $k \neq l$ then the (k, l)th term of the product of $B'A$ is just 0.

6. Let $B' = [b'_{ij}]$. Conclude that $B'A = (\det A)I$. Conclude that $BA = I$. However, this does not automatically mean that $AB = I$ since R is a general commutative ring.

7. Repeat the arguments of 2 to 6, but with row vectors u_k instead of column vectors w_k:

$$c'_{jk} = \Lambda (u_1, \ldots, u_{k-1}, e_j, u_{k+1}, \ldots, u_n) \quad C' = [c'_{jk}] \quad C = (\det A)^{-1} C'.$$

Conclude that $AC' = (\det A)I$. Conclude that $AC = I$.

8. Show that $C = B$, so A is invertible.

9. Justify the above theorem and corollary. (For one direction of the corollary, use the fact that if $AB = I$ then $\det A \cdot \det B = 1$.)

10. If a matrix has entries in \mathbb{Z}_n where n is composite, when does it have an inverse? Give a few examples of inverses of matrices in $M_2(\mathbb{Z}_n)$ and $M_3(\mathbb{Z}_n)$.

11. Prove the following Proposition. (It generalizes the proposition of LA12 to all commutative rings). Hint: $\det A \cdot \det B = 1$ implies that $\det A$ is a unit.

Proposition. Let R be a commutative ring. If $A, B \in M_n(R)$ satisfy $AB = I$, then $BA = I$. So, for square matrices, a one-sided inverse is automatically a two-sided inverse.