Let the image of the unit cube. It turns out, but we will not prove, that for any solid

\[a = \]

\[b = \]

\[c = \]

Definition. Let \(V \) be a vector space or module over \(R \). A \textit{trilinear functional} is a function \(f : V \times V \times V \to R \) which is linear in each coordinate (explain what this means). If \(f(u, v, w) = 0 \) whenever two of \(u, v, w \in V \) are equal, then we say that \(f \) is \textit{alternating}.

Problems 1–6: Basic properties of alternating trilinear functionals. Assume that \(f : V \times V \times V \to R \) is an alternating trilinear functional.

1. Give an example of an alternating trilinear functionals in terms of signed volumes in \(\mathbb{R}^3 \). Hint: generalize parallelogram to three dimensions. (Don’t be too rigorous here).

2. Expand \(f(u, v + w, v + w) \). Conclude that \(f(u, v, v) = -f(u, v, w) \). Generalize: any time two input vectors are switched, then \(f(u, v, w) \) is multiplied by \(-1\).

3. Now assume that \(V = \mathbb{R}^3 \). Let \(u = (a_{11}, a_{21}, a_{31}) \), \(v = (a_{12}, a_{22}, a_{32}) \) and \(w = (a_{13}, a_{23}, a_{33}) \). Show that

\[f(u, v, w) = \left(a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} \right)f(1, 2, 3) \]

Hint: write \(u = a_{11}e_1 + a_{21}e_2 + a_{31}e_3 \) \textit{et cetera}, and expand using linearity.

4. Assume that \(V = \mathbb{R}^3 \) where \(R \) is commutative. Show that the unique normalized (with \(f(1, 2, 3) = 1 \)) alternating trilinear functional is

\[f\left((a_{11}, a_{21}, a_{31}), (a_{12}, a_{22}, a_{32}), (a_{13}, a_{23}, a_{33}) \right) = \sum_{\sigma \in S_3} \epsilon(\sigma)a_{1\sigma(1)}a_{2\sigma(2)}a_{3\sigma(3)} \]

where \(\sigma \) varies over all 6 permutations of 1, 2, 3, and where \(\epsilon(\sigma) \) is +1 or −1 depending on \(\sigma \).

Definition. Let \(L : \mathbb{R}^3 \to \mathbb{R}^3 \) be a linear map. Define the \textit{determinant} of \(L \) to be the oriented volume of the image of the unit cube. It turns out, but we will not prove, that for any solid \(C \) in \(\mathbb{R}^3 \), that the volume of \(L(C) \) is the absolute value of the determinant of \(L \) times the original volume of \(C \).

5. Show that if the matrix of \(L \) is \([c_{ij}]\) then the determinant of \(L \) is

\[\sum_{\sigma \in S_3} \epsilon(\sigma)c_{1\sigma(1)}c_{2\sigma(2)}c_{3\sigma(3)} \]

6. Use this formula to calculate volumes of some solids in \(\mathbb{R}^3 \).

Definition. Let \(V \) be a vector space or module over \(R \). An \textit{n-linear functional} is a function \(f : V^n \to R \) which is linear in each coordinate: if \(u_i = v_i + w_i \) then

\[f(u_1, \ldots, u_i, \ldots, u_n) = f(u_1, \ldots, v_i, \ldots, u_n) + f(u_1, \ldots, w_i, \ldots, u_n) \]

and, if \(u_i = cw_i \) with \(c \in R \),

\[f(u_1, \ldots, u_i, \ldots, u_n) = cf(u_1, \ldots, w_i, \ldots, u_n). \]

If \(f(u_1, \ldots, u_n) = 0 \) whenever \(u_i = u_j \) for \(i \neq j \), then we say that \(f \) is \textit{alternating}.

Problems 7–9: Basic properties of alternating n-linear functionals. Assume that \(f : V^n \to R \) is an alternating \(n \)-linear functional. Review permutations from abstract algebra, if necessary.

7. Show that if \(\sigma \) is a transposition (2 cycle), then \(f(u_1, \ldots, u_n) = -f(u_{\sigma(1)}, \ldots, u_{\sigma(n)}) \).

8. Show that if \(\sigma \) is an odd permutation, then \(f(u_1, \ldots, u_n) = -f(u_{\sigma(1)}, \ldots, u_{\sigma(n)}) \). Show that if \(\sigma \) is an even permutation, then \(f(u_1, \ldots, u_n) = f(u_{\sigma(1)}, \ldots, u_{\sigma(n)}) \). (The group of even permutations is called the \textit{alternating group}: alternating functionals are invariant under the alternating group).

9. Now consider the case where \(V = \mathbb{R}^n \). Suppose that \(w_1, \ldots, w_n \) are vectors (often \(e_1, \ldots, e_n \)). Suppose \(u_j = a_{ij}w_1 + \ldots + a_{nj}w_n \). Show that when you expand \(f(u_1, \ldots, u_n) \) using linearity, you get \(n^n \) terms (some will turn out to be zero). To choose a term of the expansion, pick a term \(a_{\gamma(j)} w_{\gamma(j)} \) from each \(u_j = \sum a_{ij}w_i \), where \(\gamma(j) \in \{1, \ldots, n\} \). Note there are \(n^n \) ways of choosing \(\gamma(1), \ldots, \gamma(n) \) and

\[f(u_1, \ldots, u_n) = \sum_{\gamma} f(a_{\gamma(1)}w_{\gamma(1)}, \ldots, a_{\gamma(n)}w_{\gamma(n)}) \].