Problems 1-7: Inverses of matrices. In problems 1-4 assume \(R \) is a field or a commutative ring. In problems 5-7 we will play it safe and assume that \(R = F \) is a field. Use the ring isomorphism \(\Phi : M_n(R) \to \text{End}(R^n) \).

1. Let \(A \in M_n(R) \). Then \(A \) invertible means it is has a multiplicative inverse in the ring \(M_n(R) \). In other words, there exists a matrix \(B \in M_n(R) \) such that \(AB = BA = I \) where \(I \) is the identity matrix. From ring theory we know that the inverse of \(A \), if it exists, is unique and \((A^{-1})^{-1} = A \). Use the isomorphism from \(\Phi : M_n(R) \to \text{End}(R^n) \) to observe that if \(A = \text{Mat}(f) \) then \(B \) is the inverse of \(A \) if and only if \(B = \text{Mat}(f^{-1}) \).

So inverting matrices is equivalent to finding inverses of linear maps.

2. Show that if a matrix in \(M_n(R) \) has a zero row, or a zero column, then it is not invertible. Hint: interpret the problem in terms of linear maps that can be shown not to be surjective or not to be injective.

3. Show that if \(f : A \to B \) and \(g : B \to C \) are functions with \(g \circ f \) equal to the identity map, then \(g \) is surjective and \(f \) is injective. (This is just set theory: no linear algebra is required).

4. Show that if \(A, B \in M_n(R) \) are matrices with \(AB = I \) with \(I \) the identity matrices, then \(A \) is the matrix of a surjective linear map and \(B \) is the matrix of an injective linear map.

5. (Continued) Show that \(A \) and \(B \) are matrices of isomorphisms (hint: use \(\text{LA10, problem 11} \)). Conclude that \(A \) and \(B \) are invertible.

6. Show that if \(A, B \in M_n(R) \) are matrices with \(AB = I \) with \(I \) the identity matrices then \(A \) and \(B \) are inverses of each other (in other words, that \(BA = I \)). Hint: you know that \(A^{-1} \) exists. Show \(B = A^{-1} \).

Proposition. If \(A, B \in M_n(F) \) are such that \(AB = I \) then \(BA = I \). (Here \(F \) is a field, or integral domain).

7. Generalize. Show that if \(A, B \in M_n(F) \) are matrices with \(AB \) invertible, then both \(A \) and \(B \) are invertible.

Problems 8-14: Row and column operations. Assume \(R \) is a field or a commutative ring.

8. Suppose that \(1 \leq i < j \leq m \). Show that there is a matrix \(X \in M_{m,n}(R) \) such that, for all \(n \) and for all \(A \in M_{m,n}(R) \), the matrix \(XA \) is equal to the matrix \(A \) except that the \(i \)th and \(j \)th rows are switched. Show that \(X \) is its own inverse. Show that if \(A \in M_{m}(R) \) then \(A \) is invertible if and only if \(XA \) is invertible. (General fact: for any associative operation with identity element, if \(x \) is invertible, then the product \(xa \) is invertible if and only if \(a \) is.)

9. Give a similar construction for switching columns.

10. Let \(1 \leq i \leq m \) and let \(c \) be a unit in \(R \) (so if \(R \) is a field, just assume \(c \neq 0 \)). Find a matrix \(X \in M_{m}(R) \) such that, for all \(n \) and for all \(A \in M_{m,n}(R) \), the matrix \(XA \) is equal to the matrix \(A \) except that every entry the \(i \)th row has been multiplied by \(c \). Describe an inverse for \(X \). Conclude that if \(A \in M_{m}(R) \) then \(A \) is invertible if and only if \(XA \) is invertible. Give a similar construction for changing a column.

11. Let \(i \) and \(j \) be distinct row numbers, and let \(c \) be an element of \(R \). Find a a matrix \(X \in M_{m}(R) \) such that, for all \(n \) and for all \(A \in M_{m,n}(R) \), the matrix \(XA \) is equal to the matrix \(A \) except that the \(i \)th row (considered as a vector in \(R^n \)) has been replaced by the \(i \)th row plus \(c \) times the \(j \)th row. Show that \(X \) has an inverse. Conclude that if \(A \in M_{m}(R) \) then \(A \) is invertible if and only if \(XA \) is invertible. Give a similar construction for changing a column in this way.

12. The above three operations are called row operations and column operations. Consider the following procedure. Start with \(C := A \) and \(D := I \). Then in the row operation step choose a row operation, and perform this operation to both \(C \) and \(D \): in other words replace \(C \) by \(XC \) and \(D \) by \(XD \) for \(X \) as above. Repeat the row operation step until \(C = I \). Show that if this procedure ends then \(D = A^{-1} \). Hint: show that \(D \) is invertible at each stage, and that at each stage \(D^{-1}C = A \).

13. Find inverses of matrices of your choosing in \(M_m(Q) \), \(M_m(F_3) \) and \(M_m(Z) \), using this technique.

14. Describe a procedure which, given \(A \in M_n(F) \), will either find an inverse for \(A \) or show you that \(A \) is not invertible. Assume \(R = F \) is a field for this. Hint: if there is a dependency among columns, then \(C \) is not invertible. Why?