Abstract: A problem in extremal set theory takes the form of determining the maximum number of subsets of \(\{1,2,\ldots,m\} \) you can choose so that the resulting family of subsets has some property. The property I will consider is a `trace' being forbidden. A `trace' of a set system, given a set \(S \), is the new family of sets formed by intersecting the sets of the original family with \(S \). An incidence matrix encodes the system of subsets as an \(m \)-rowed \((0,1)\)-matrix \(A \) with no repeated columns. The forbidden trace becomes a `forbidden configuration' namely for some given \((0,1)\)-matrix \(F \) you are forbidding \(A \) from having any submatrix which is a row and column permutation of \(F \).

One defines \(\text{forb}(m,F) \) as the maximum number of columns, over all \(m \)-rowed \((0,1)\)-matrices with no repeated column and no submatrix which is a row and column permutation of \(F \). This concept of forbidden configurations has many results of which the study of VC-dimension has been the most notable. I will discuss a number of the bounds obtained and the interesting variety of proofs.