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Abstract

The widespread presence of synchronized neuronal
oscillations within the brain suggests that a mech-
anism must exist that is capable of decoding such
activity. Two realistic designs for such a decoder
include: 1) a read-out neuron with a high spike
threshold, or 2) a phase-delayed inhibition network
motif. Despite requiring a more elaborate network
architecture, phase-delayed inhibition has been ob-
served in multiple systems, suggesting that it may
provide inherent advantages over simply imposing a
high spike threshold. In this work, we use a compu-
tational and mathematical approach to investigate
the efficacy of the phase-delayed inhibition motif in
detecting synchronized oscillations. We show that
phase-delayed inhibition is capable of creating a syn-
chrony detector with sharp synchrony filtering prop-
erties that depend critically on the time course of
inputs. Additionally, we show that phase-delayed in-
hibition creates a synchrony filter that is far more
robust than that created by a high spike threshold.
Keywords: phase-delayed inhibition, feedforward
inhibition, time-delayed inhibition, synchrony filter,
neuronal networks, neuronal network motifs, mathe-
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matical neuroscience, synchronized oscillations, net-
work structure and function

1 Introduction

Within the brain, synchronized oscillations are ubiq-
uitous, as evident from local field potential (LFP),
electroencephalogram (EEG), and other recordings
obtained from diverse species throughout the animal
kingdom. In fact, networks of neurons can be found
within the brains of all manner of organisms, from
insects and fish to birds and mammals, which exhibit
synchronized and periodic spiking within physiolog-
ically meaningful dynamical regimes (e.g., see Eck-
horn, 1994; Friedrich et al., 2004; Gray, 1994; Laurent
and Davidowitz, 1994; Marthy and Fetz, 1992; Srid-
haran et al., 2011). In some instances, such as thala-
mocortical oscillations during sleep (Steriade, 2006),
neuronal oscillations are coordinated on a global scale
and may not play a direct role in information pro-
cessing. In many instances, however, synchronized
oscillations are localized and modulated by exter-
nal stimuli. The overwhelming presence of stimulus-
dependent, periodic, coherent activity within a vast
array of brain areas implies that synchronized oscilla-
tions may be a strategy commonly employed by neu-
ronal networks to encode and relay information.
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In order for the brain to use synchronized oscil-
lations as a coding tool, a neural mechanism must
exist that is capable of decoding the activity of a
population of cells representing information by firing
in a coherent and periodic fashion. There are two
simple, biologically plausible mechanisms for creat-
ing such a decoder: 1) a read-out neuron with a high
spike threshold (relative to the strength of individ-
ual inputs), and 2) a read-out neuron that receives
phase-delayed inhibition.

A decoder with a high threshold detects synchro-
nized oscillations by virtue of the fact that a large
proportion of its inputs (the encoders) must fire in
unison in order for the decoder to cross spike thresh-
old, and hence this decoder will be active during an
oscillation cycle only if this condition is satisfied (fig-
ure 1A). An example of a high threshold synchrony
decoder can be found in the auditory system; each
octopus cell within the ventral cochlear nucleus re-
ceive convergent input from at least 60 auditory nerve
fibers. Octopus cells have low input resistance, short
membrane time constants, and a relatively high spike
threshold. These cells therefore have brief temporal
integration windows (∼1 ms) and act as coincidence
detectors of their input – an octopus cell will fire
only if a significant fraction of its presynaptic audi-
tory nerve fibers spike synchronously (see Oertel et
al., 2000 for a review).

Phase-delayed inhibition operates in a different
manner. The neural architecture underlying phase-
delayed inhibition consists of a group of neurons (the
encoders) that provide excitation to a read-out neu-
ron (the decoder), but en-route to the read-out cell
the axons of the encoders send collaterals to a group
of inhibitory interneurons, which in turn provide po-
tent inhibitory input to the read-out cell (figure 1B).
As a consequence of synaptic transmission delay (or
via some other delay-generating mechanism), each
excitatory input to the decoder is followed, with
a characteristic temporal lag, by an inhibitory in-
put. The intuition behind phase-delayed inhibition
is clear; if the encoders spike haphazardly, then the
inhibitory interneurons follow accordingly, and the
read-out neuron remains covered in a perpetual blan-
ket of inhibition, unable to respond to the encoders.
If, on the other hand, the encoders fire synchronously,
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Figure 1: Schematic of network architecture needed
to implement synchrony decoding with a high spike
threshold versus phase-delayed inhibition. A) High
spike threshold decoder. A set of excitatory encoder
neurons innervate a decoder neuron with a high spik-
ing threshold relative to the strength of encoder in-
puts. B) Phase-delayed inhibition decoder. A set
of excitatory encoder neurons innervate a set of in-
hibitory interneurons as well as sending convergent
input to a decoder neuron. The decoder neuron also
receives input from the inhibitory interneurons. Each
excitatory encoder spike is followed, with a slight de-
lay, by an inhibitory interneuron spike.

then the read-out neuron will receive aggregate ex-
citation followed by pooled inhibition, allowing the
read-out cell to respond to the encoders within the
window of excitation. This process can be repeated
within each cycle of oscillation, enabling the decoder
neuron to behave as a synchrony filter – the read-
out cell fires if the encoders spike synchronously but
remains quiescent if their spiking is discordant.

Within the brain, anatomical and physiological
studies have led to the proposal of phase-delayed in-
hibition as a means to decode synchronous spiking
within a neuronal population in multiple systems (see
Real Neural Systems section of Discussion), and sev-
eral existing models have examined the physiologi-
cal significance of phase-delayed inhibition (see Other
Modeling Work section of Discussion). However, the
precise computations performed by the phase-delayed
inhibition architecture have yet to be rigorously in-
vestigated. In this work, we seek to fill this void. We
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begin by deconstructing the idea into its most math-
ematically simplified form, and we then verify the
results of our simplified scheme by simulating exci-
tatory and inhibitory inputs to an integrate-and-fire
model neuron as well as deriving analytic results on
neuronal dynamics. We conclude that, within the
proper dynamical regime, phase-delayed inhibition
can impose a sharp synchrony threshold on the inputs
to a read-out cell, and hence can serve as a powerful
device to allow a decoder to discard inputs falling be-
low this threshold level of synchrony. Furthermore,
we show that phase-delayed inhibition allows for the
creation of a synchrony detector that is more robust
to noise than a synchrony detector created using a
high spike threshold (without inhibition).

2 Results

2.1 Model of Encoder and Interneu-
ron Spikes

In accordance with the diagram presented in figure
1B, we constructed a network consisting of n en-
coder neurons, n inhibitory interneurons, and a single
read-out neuron (i.e., decoder neuron). In all inves-
tigations, the number of inhibitory interneurons was
kept equal to the number of encoders, with the num-
ber of each given by n (this common number of en-
coders and interneurons n was varied in some investi-
gations). In order to formulate the problem of phase-
delayed inhibition in a mathematically tractable and
intuitively transparent manner, we described the ac-
tivity of the encoders and inhibitory interneurons us-
ing step functions distributed over a T ms period. A
spike of the kth encoder cell occurring at time τ was
described by a step function taking the value 0 until
time τ , the value α

n from time τ to time τ + c, and
the value 0 from time τ + c onwards. If the kth en-
coder fired at time τ , then a spike was elicited from
the kth inhibitory neuron at time τ + d, which was
described by a step function taking the value 0 until
time τ + d, the value −β

n from time τ + d to time
τ + d + h, and the value 0 from time τ + d + h on-
wards. The total amplitude of excitation, in the case
that all encoders fired in unison, was therefore given

by α (independent of n). If all inhibitory neurons
fired concordantly, the net magnitude of inhibition
was given by β, a parameter which was varied in our
simulations. We performed simulations with different
values of the synaptic delay d and found similar re-
sults for all reasonable values; to simplify subsequent
analysis, we fixed the delay at the value d = 3 ms. In
agreement with the approximate time course of fast
excitatory synapses within the brain, the length of
excitation was fixed at c = 3 ms (Kleppe and Robin-
son, 1999; Loring and Zigmond, 1988; Thany, 2010;
Titz and Keller, 1997; Zhou and Hablitz, 1998). The
inhibitory time course h was varied during our inves-
tigations (figure 2). The net input to the read-out
neuron (i.e., decoder neuron) as a function of time
was given by the sum of the 2n step functions describ-
ing the activity of the n encoders and n inhibitory
neurons.

To test the efficacy of phase-delayed inhibition in
decoding coherent oscillations, we set an oscillation
frequency ω Hz and simulated varying levels of syn-
chrony among the input elements. If ω Hz corre-
sponded to a period of T ms, then each encoder cell
was designated to spike exactly once during each T
ms period. A synchrony level of 0 (complete decoher-
ence) was simulated by evenly distributing the phases
of the n encoder spikes throughout each T ms period,
while a synchrony level of 1 (perfect synchrony) was
simulated by precisely aligning the spike times of each
encoder within every T ms period. Intermediate val-
ues of synchrony ranging from 0 to 1 were simulated
by evenly distributing encoder spike times through-
out progressively smaller time windows within each
T ms period (with window size shrinking linearly as a
function of synchrony from T to 0 ms). The distribu-
tion of spike phases throughout a given time window
was uniform and deterministic (i.e., not random).

2.2 Simplified Decoder Model

Our simplified decoder model was constructed by im-
posing a numerical threshold on the sum of the 2n
step functions describing the activity of the n en-
coders and n inhibitory neurons. Within our sim-
plified decoder model, we fixed the strength of ex-
citation at α = 1 and we designated the read-out
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Figure 2: Description of encoder and interneuron
spikes as step functions. Within each T ms oscillation
period, each of the n encoders was designated to have
spiked once, with spike times distributed throughout
the T ms period. If an encoder spiked at time τ , then
the spike was described by a step function taking the
value α

n from time τ to time τ + c and the value 0
elsewhere. The corresponding inhibitory interneuron
was designated to have spiked at time τ +d, with the
spike described by a step function taking the value
−β
n from time τ + d to time τ + d+ h and the value

0 elsewhere. We fixed d = 3, while β and h were
varied during our simulations. For our simplified de-
coder model, we fixed α = 1 and summed the 2n step
functions describing the activity of the n encoders
and n interneurons; we fixed a numerical threshold
Θ = 0.05, and the activity of the decoder was mea-
sured as the amount of time the step function sum
spent above the threshold Θ.

cell (i.e., decoder neuron) as being active (i.e., fir-
ing action potentials) when the net input exceeded
a particular threshold value Θ. Since the amplitude
of each encoder input was normalized (and given by
α
n , with α = 1), the threshold satisfied 0 ≤ Θ ≤ 1,
with the value of Θ denoting the fraction of encoder
cells that were required to be synchronously active in
order to induce spiking in the read-out neuron. The
activity of the decoder neuron was measured as the
total amount of time spent above the threshold Θ.

A high value for Θ would clearly require a large
proportion of encoders to fire concurrently in order
to push the read-out cell above threshold, regardless
of the presence of inhibition. Thus, phase-delayed
inhibition is likely to be most useful as a synchrony

filter for a relatively low threshold. For an oscillation
frequency of ω = 20 Hz, a threshold of Θ < 0.35 was
required to ensure that in the absence of inhibition,
asynchronous encoder activity was capable of driving
the read-out neuron above threshold. For an oscilla-
tion frequency of ω = 50 Hz, the threshold was re-
quired to satisfy Θ < 0.2, and an oscillation frequency
of ω = 100 Hz necessitated Θ < 0.08. We accordingly
fixed the threshold at a value of Θ = 0.05.

2.2.1 Synchrony Filtering

In figure 3, we set an oscillation frequency of ω = 50
Hz and plot the activity of the read-out neuron (i.e.,
time spent above threshold) as a function of encoder
synchrony (n = 20); the amplitude (β) and the time
course (h) of inhibition vary from panel to panel.
When β = 0 (i.e., no inhibition), the read-out cell ex-
hibits high levels of activity for all levels of encoder
synchrony. For nonzero values of β, however, the
presence of phase-delayed inhibition creates a sharp
synchrony threshold – the read-out neuron remains
quiescent until the encoders reach a particular syn-
chrony level, at which point the activity of the read-
out cell jumps dramatically. As apparent from figure
3, the magnitude of inhibition has an effect on the
synchrony threshold only over a very small range of
β values; once β exceeds a certain minimal value,
the synchrony threshold becomes fixed, and further
increases in inhibitory strength are inconsequential.
The precise minimum value of β after which the syn-
chrony threshold becomes fixed (βmin) depends on
other system parameters; however, for all system pa-
rameters studied, we found that βmin ≤ 8. The in-
hibitory time course (h), on the other hand, has a
dramatic effect on the synchrony threshold; as h is
lengthened, the synchrony threshold systematically
shifts towards perfect synchrony. Thus, for a partic-
ular set of system parameters, there exists a range
of h values between hmin and hmax such that: 1)
for h ≤ hmin, the read-out cell responds to all lev-
els of encoder synchrony, including the maximally
asynchronous state where the encoder phases are uni-
formly distributed over a period; 2) for h ≥ hmax, the
read-out cell is quiet regardless of the level of encoder
synchrony; 3) by appropriately choosing h within the
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interval (hmin, hmax), the synchrony threshold of the
read-out neuron can be set at any desired value.

Figure 3: Effect of inhibitory amplitude and time
course on synchrony detection using the simplified
decoder model. A) Without inhibition, the decoder
does not act as a synchrony detector. In B), C), and
D), the inhibitory time course h is lengthened for dif-
ferent values of the inhibitory amplitude β; with in-
hibition, the decoder acts as a sharp synchrony filter,
responding only to inputs exceeding a threshold level
of synchrony. Increases in the time course h system-
atically increase the synchrony threshold, while the
amplitude β has little effect on synchrony filtering.
Encoder number was given by n = 20, the excitatory
ammplitude was fixed at α = 1, and the oscillation
frequency was set at ω = 50 Hz (T = 20 ms).

In accordance with this result, we fixed the in-
hibitory amplitude at a large value (β = 1000) and
plotted the activity of the read-out neuron for oscilla-
tion frequencies of ω = 20 Hz (figure 4A) and ω = 100
Hz (figure 4B). Figures 3 and 4 show that, regard-
less of the oscillation frequency, lengthening the in-
hibitory time scale results in a systematic right-shift
of the synchrony threshold. Thus, we conclude that
the time scale of inhibition is the primary determi-
nant of the efficacy of phase-delayed inhibition as a
synchrony filter, while the inhibitory amplitude has
little effect on synchrony filtering.

Figure 4: Effect of inhibitory time course on syn-
chrony detection using the simplified decoder model.
The inhibitory amplitude β is fixed at a large value
(β = 1000), and the response of the decoder is plotted
as a function of input synchrony for varying values of
the inhibitory time course h. For an oscillation fre-
quency of A) ω = 20 Hz (T = 50 ms) or B) ω = 100
Hz (T = 10 ms), the decoder responds only to inputs
exceeding a threshold level of synchrony, with the
value of the synchrony threshold depending on the
the time course of inhibition h. The encoder number
was set at n = 20 and the excitatory amplitude was
fixed at α = 1.

2.2.2 Number of Neurons

In the above simulations, we fixed the number of en-
coder neurons and number of inhibitory interneurons
at n = 20; however, the question naturally arises
as to how many encoders are required in order for
phase-delayed inhibition to act as an effective coin-
cidence detector. In order to address this, we fixed
the inhibitory amplitude at a large value (β = 1000)
and, for each oscillation frequency, we set a charac-
teristic inhibitory time scale to achieve a synchrony
threshold of ∼ 0.5. In figure 5, we plot read-out cell
activity as a function of synchrony for varying values
of n (where n is the number of encoder neurons and
inhibitory interneurons), showing that phase-delayed
inhibition can create a sharp synchrony threshold us-
ing a relatively small number of encoders. In fact,
a sharp threshold is observed for neuron numbers as
low as n = 5, with further increases in n exerting
little influence on synchrony filtering. This suggests

5



that the sum of the 2n step functions (corresponding
to the n encoders and n inhibitory neurons) involved
in computing read-out cell activity converges rapidly
in the large n limit, a limit which we will utilize in
subsequent analysis.

Figure 5: Effect of encoder number on synchrony de-
tection using the simplified decoder model. For os-
cillation frequencies of A) ω = 20 Hz (T = 50 ms),
B) ω = 50 Hz (T = 20 ms), and C) ω = 100 Hz
(T = 10 ms), the response of the decoder is plotted
as a function of input synchrony for varying encoder
numbers n. The decoder responds only to inputs ex-
ceeding a threshold level of synchrony, and the value
of the synchrony threshold rapidly approaches a lim-
iting value for large n. The excitatory amplitude was
fixed at α = 1 and the inhibitory amplitude was fixed
at β = 1000.

2.3 Integrate-and-Fire Decoder
Model

In the above work, we approximate the activity of a
read-out neuron by imposing a numerical threshold

Θ on the sum of the 2n inputs; since the inputs are
described by step functions, it is not too surprising
that this simplified decoder model would lead to an
abruptly rising synchrony-response function for the
hypothetical read-out cell. The sum of 2n step func-
tions is a step function, and step functions have flat
plateaus and basins rather than sharp peaks and val-
leys. As synchrony is increased, the input step func-
tions exhibit greater and greater overlap, causing the
sum to have higher plateaus and deeper basins. Thus,
as soon as synchrony is high enough such that the
sum of the step functions rises above Θ, an entire
plateau rises above Θ, causing read-out cell activity
to jump discontinuously at this synchrony value.

A physiologic read-out neuron, however, exhibits
dynamics that are more complex than can be cap-
tured by simply imposing a threshold Θ on the sum
of step function inputs. While synaptic inputs to a
physiologic read-out neuron are likely to be well ap-
proximated by step functions, the membrane poten-
tial V (t) of the decoder depends not only on synaptic
conductance modulations, but also on the membrane
time constant as well as voltage-dependent nonlin-
earities. Since membrane potential dynamics are not
instantaneous, the associated time scale of the re-
sponse implies that V (t) changes continuously, even
when the synaptic inputs are described by discontin-
uous step functions.

We therefore simulated a physiologic read-out cell
using a reduced dimensional integrate-and-fire model.
By “reduced dimensional” we mean that the mem-
brane potential V is nondimensional, while time t is
in units of milliseconds and g is in units of ms−1.
The equation governing membrane potential is given
by

dV

dt
= −gV + i(t) (1)

where g is the leak conductance, V0 = 0 is the
resting potential, and Vthresh = 1 is the threshold
for firing an action potential. In other words, when
V (t) approaches Vthresh from below, an action poten-
tial is recorded and the membrane potential is reset
to V0. i(t) =

∑n
j=1 ij(t) is the total input current

from n excitatory encoder neurons and n inhibitory
interneurons. The effective j-th input is the sum of
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the excitation from the j-th encoder and the inhibi-
tion from the corresponding j-th interneuron.

ij(t) =


α/n, if t (mod T ) ∈ (ϕj , ϕj + c)

−β/n, if t (mod T ) ∈ (ϕj + c, ϕj + c+ h)

0, elsewhere

where α, β, c, h, T > 0, c + h < T and ϕj is the rel-
ative phase of the j-th neuron with ϕ1 := 0. For
simplicity, we assume the phases to be uniformly
distributed over a ‘window’ of size w < T , so that
ϕj = −(j − 1)w/n. The level of encoder synchrony
(ranging from 0 to 1) is therefore given by 1− (w/T ).

Thus, we modeled the synaptic input i(t) as the
sum of the 2n step functions representing inputs from
the n encoders and n inhibitory neurons, as described
in the Model of Encoder and Interneuron Spikes sec-
tion. Within the simplified decoder model, we simu-
lated a low spike threshold (relative to the net excita-
tory strength α = 1) by setting Θ = 0.05. With the
integrate-and-fire decoder, spike threshold is fixed,
and hence we set the excitatory strength at a high
value (α = 8) in order to ensure a spike threshold that
is low relative to α. Synchrony levels ranging from 0
to 1 were simulated by evenly distributing encoder
spike times throughout progressively smaller time
windows within each T ms period. Using computa-
tional simulations, we found that the results obtained
above using a numerical threshold Θ translated rela-
tively unchanged to the case of the integrate-and-fire
read-out neuron. The integrate-and-fire decoder be-
haves as a sharp synchrony filter for relatively small n
(as low as n = 5), with further increases in n having
little effect on coherence detection (data not shown).
Additionally, the time course of inhibition (h) plays a
vital role in determining the synchrony filtering prop-
erties of the read-out cell, with increases in h yield-
ing systematic right-shifts of the synchrony threshold
(figure 6).

However, figure 6 shows that synchrony filtering
also appears to be sensitive to the amplitude of in-
hibition (β) – increases in β lead to right-shifts of
the synchrony threshold, with very large β rendering
the decoder unable to respond to any inputs. This is
different from the results obtained using the simpli-
fied model of a numerical threshold Θ, a discrepancy

which can be explained by the fact that the time
course of the response of an integrate-and-fire neu-
ron directly depends on the amplitude of the input.
In other words, given two step function inputs with
the same time course but different amplitudes, the
membrane potential V (t) takes longer to decay in re-
sponse to the larger amplitude input than in response
to the smaller amplitude input. In terms of V (t), in-
creasing β effectively increases h as well. Thus, we
conclude that phase-delayed inhibition can serve as
a robust mechanism to transform a read-out neuron
into a sharp synchrony filter, with the time scale of
inhibition (relative to the time scale of excitation) be-
ing key in determining the level of synchrony required
to induce the decoder to spike.

2.3.1 Mathematical Analysis

Above, we presented computational results on the
synchrony detection properties of the integrate-and-
fire decoder for various system parameter values. As
shown in figure 6, we found that the integrate-and-fire
decoder behaves as a sharp synchrony filter – below
a threshold level of encoder synchrony the decoder
does not spike, while above this synchrony threshold
the firing rate of the decoder jumps to high values.
It follows that the synchrony threshold represents the
level of encoder synchrony at which the read-out cell
transitions from quiescence to repetitive spiking. In
this section, we use this observation to develop ana-
lytical results on the synchrony detection properties
of the integrate-and-fire decoder.

When the integrate-and-fire decoder is quiescent,
an analytical solution to the membrane potential
equation can be easily obtained in the case of the
limit n → ∞ (where n is the number of encoders
and also the number of interneurons), and this so-
lution is valid as long as the membrane potential
of the decoder remains below the spike threshold
(Vthresh = 1). Using the analytical solution to the
membrane potential equation of the integrate-and-
fire decoder, we explicitly calculate the synchrony
threshold as a function of system parameters, and in
particular we examine the relationship between the
synchrony threshold of the decoder and the strength
of excitation α (with other system parameters fixed).
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Figure 6: Effect of inhibitory amplitude and time course on synchrony detection using the integrate-and-fire
decoder model. Without inhibition (left column), the decoder fires for all levels of input synchrony. In the
presence of phase-delayed inhibition, the decoder acts as a sharp synchrony filter, firing only if its inputs
exceed a particular threshold level of synchrony. Increases in either the time course h or the amplitude
β of inhibition yield increases in the value of the synchrony threshold, with very large values of h or β
rendering the decoder unable to respond for any synchrony level. Encoder number was fixed at n = 20 and
net excitatory amplitude was set to α = 8. For ω = 20 Hz, the inhibitory time courses were h = 0, 3, 15 ms.
For ω = 50 Hz, the inhibitory time courses were h = 0, 3, 6 ms. For ω = 100 Hz, inhibitory time courses
were h = 0, 3, 4 ms.

Suppose we fix the system parameters β, c, h, T ,
and we set the level of encoder synchrony at a par-
ticular value s. Since α is the strength of excitation
received by the read-out neuron, the read-out neuron
will be quiescent for sufficiently low values of α, while
for sufficiently high values of α, the read-out neuron
will fire repetitively. For a critical value of α (which
we denote by αc) the readout neuron undergoes a
transition from quiescence to repetitive firing mode,

as α is increased continuously. We can explicitly cal-
culate αc for different levels of encoder synchrony s,
and the function αc(s) provides us with insight into
the synchrony filtering properties of the system. The
details of the calculations are provided in the Supple-
mentary Material.

In order to demonstrate how phase delayed inhi-
bition provides a mechanism for synchrony filtering,
we plot in figure 7A a graph of the critical value of
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α (αc(s)) as a function of the level of encoder syn-
chrony s for β = 0 (no inhibition) and β = 8 (with
phase delayed inhibition). For β = 0, αc(s) is almost
horizontal; in fact, we find that αc(0.75) = 0.25 while
αc(1) = 0.227, which implies that α must be fine-
tuned within a narrow band in order for the read-out
neuron to act as a synchrony filter. If α is set at a
value below this narrow band (i.e., if α < 0.227), then
the decoder will be quiescent for all levels of encoder
synchrony. If α is set at a value above this narrow
band (i.e., if α > 0.25), then the encoder will spike
repetitively for all levels of encoder synchrony. For α
within this narrow band (i.e., for 0.227 ≤ α ≤ 0.25),
tiny changes in α result in large changes in the syn-
chrony threshold (the level of encoder synchrony at
which the transition from no spiking to spiking oc-
curs). Thus, for β = 0, which corresponds to the
case of the synchrony detector employing a high spike
threshold, the system exhibits a startling lack of ro-
bustness – the strength of the excitation α must be
set within a very narrow band in order for the read-
out neuron to have a synchrony threshold, and even
within this narrow band, slight fluctuations in α en-
tail radical shifts in the synchrony threshold of the
read-out cell. On the other hand, for large, positive
β (i.e., for a synchrony detector employing phase-
delayed inhibition), for instance β = 8, we find that
αc(0.75) = 8.58 and αc(1) = 6.23; compared to the
no inhibition case, there is a larger range of α over
which the read-out neuron has a synchrony thresh-
old. For the phase-delayed inhibition case, the sys-
tem therefore exhibits a greater degree of robustness
– for values of α for which a synchrony threshold ex-
ists (i.e., for 6.23 ≤ α ≤ 8.58), small changes in α
yield less drastic shifts in the synchrony threshold of
the read-out cell.

In the second graph (figure 7B), the strength of
inhibition is kept proportional to the strength of the
excitation – we plot αc as a function of s for β = α.
When the strength of inhibition β is varied with the
strength of excitation α, we find that synchrony fil-
tering is exceptionally robust. As the nearly vertical
portion of the graph in figure 7B suggests, sufficiently
high values of α yield a read-out neuron with prac-
tically invariant synchrony filtering properties – the
synchrony threshold of the read-out cell remains es-

sentially untouched even when α is changed consid-
erably.

Thus, synchrony filtering in the no inhibition case
(β = 0) exhibits a delicate sensitivity to α, while for
constant (nonzero) β the synchrony threshold is more
robust to fluctuations in the strength of excitation α.
On the other hand, for α = β the synchrony threshold
is nearly immune to changes in α (as long as α is suf-
ficiently large). This implies that a decoder employ-
ing phase-delayed inhibition has a synchrony thresh-
old that is more robust to variations in the strength
of excitation α than a decoder utilizing a high spike
threshold; moreover, the synchrony threshold of the
phase-delayed inhibition decoder is exceptionally ro-
bust to fluctuations in α if the strength of excitation
α and the strength of inhibition β vary together.

In a real neuronal system, if a read-out neuron em-
ploying phase-delayed inhibition receives input from
n encoders (so that each excitatory encoder input
has strength α

n and each inhibitory interneuron in-

put has amplitude β
n ), it is likely that encoder activ-

ity is noisy, and so the number of the n encoders that
actually fire a spike will vary considerably from one
oscillation cycle to the next. The net excitatory and
inhibitory input amplitude will therefore vary from
period to period, but they will vary together (i.e., if
k encoders fire during a particular oscillation cycle,
the read-out neuron will receive a net excitation of
kα
n and a net inhibition of kβ

n ). Since the synchrony
threshold is relatively invariant to changes in n, this
is effectively equivalent to α and β varying from pe-
riod to period with the ratio α

β remaining constant.
Thus, it is likely that figure 7B is most relevant to
the robustness required of a real neuronal synchrony
filter utilizing phase-delayed inhibition, and figure 7B
shows that in the case that the ratio α

β is held fixed
phase-delayed inhibition creates a synchrony thresh-
old that is incredibly robust to fluctuations in encoder
activity.

2.3.2 Phase-Delayed Inhibition vs High
Spike Threshold

The analytical results of the previous section imply
that a read-out neuron employing phase-delayed in-
hibition is capable of robustly detecting encoder syn-
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Figure 7: Critical value of α (αc) required for the
integrate-and-fire decoder to spike as a function of
synchrony. A) The inhibitory amplitude was fixed at
a value of β = 0 or β = 8. In the absence of inhibi-
tion, a synchrony threshold exists over a very narrow
range of α values. With phase-delayed inhibition, a
synchrony threshold exists over a broader range of
α values. B) The inhibitory amplitude was varied
with the excitatory amplitude (β = α). So long as α
is sufficiently large, the synchrony threshold remains
almost entirely untouched by changes in α. Other
parameters were fixed at c = 3 ms, h = 5 ms, ω = 50
Hz (T = 20 ms).

chrony superimposed on a background of noisy en-
coder activity, while the synchrony detection proper-
ties of a read-out cell utilizing a high spike thresh-
old are exquisitely sensitive to the background noise.
Since it is well known that biological systems are in-
herently noisy, robustness to noise may provide the
answer to the question of why the elaborate network
architecture needed to implement phase-delayed inhi-
bition would evolve in real neuronal systems. Below,
we present computational results on the integrate-
and-fire decoder model that complement the analyt-
ical results of the previous section. We examine the
robustness of the synchrony threshold in the case of a
phase-delayed inhibition decoder versus in the case of
a high spike threshold decoder in two key ways: 1) we
fix the number of encoders that fire during an oscilla-
tion cycle and vary the strength of individual encoder
and interneuron inputs; 2) we fix the strength of indi-
vidual encoder and interneuron inputs and vary the
number of encoders that fire during an oscillation cy-
cle.

2.3.2.1 Input Strength: As shown in the ana-
lytically derived results of figure 7A, phase-delayed
inhibition creates a synchrony threshold that is more
resistant to small variations in the strength of excita-
tion α than that created using a high spike threshold
(where, with n encoders, the strength of an excitatory
input spike from an encoder is given by α

n ). In other
words, if a read-out neuron employs phase-delayed in-
hibition (with a relatively low spike threshold), small
changes in α (with the inhibitory amplitude β held
fixed) cause relatively small changes in the value of
the synchrony threshold. If, on the other hand, a
read-out neuron utilizes a relatively high spike thresh-
old (without inhibition), then even slight changes in
α entail substantial shifts in the value of the syn-
chrony threshold. This analytically derived insight is
supported by the computational results presented in
figure 8A. In figure 8A, we vary the strength of exci-
tatory encoder inputs α while fixing the amplitude of
inhibitory interneuron inputs β and fixing the num-
ber of encoders that fire during an oscillation cycle
at n. Figure 8A shows that phase-delayed inhibition
creates a synchrony threshold that is more robust to
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Figure 8: Robustness of synchrony filtering using phase-delayed inhibition vs high spike threshold within the
integrate-and-fire decoder model. A) With a high spike threshold (and no inhibition), a 10% change in the
strength of total excitation α leads to large changes in the value of the synchrony threshold. If phase-delayed
inhibition is employed, a 10% change in α entails smaller changes in the value of the synchrony threshold. B)
When using phase-delayed inhibition to create a synchrony filter, if the ratio of net excitatory to inhibitory
strength (αβ ) is fixed, then the value of the synchrony threshold is nearly impervious to changes in α (or β)

and is determined almost entirely by the time course of inhibition (h). In the right panel, the blue, green and
red curves overlap completely and hence cannot be visually distinguished. C) Encoder number was fixed at
n = 20, with the amplitude of each individual encoder input given by α

n and the amplitude of each individual

interneuron input given by −β
n . The parameters α, β, h, c were fixed in each panel, but rather than having all

n encoders spike during an oscillation cycle, we designated a number k of the n encoders to spike during the
oscillation period. If a high spike threshold (without inhibition) is used to create a synchrony filter, small
changes in k lead to large variations in the value of the synchrony threshold. If phase-delayed inhibition is
employed, then even large changes in k lead to minimal deviations in the value of the synchrony threshold.
Data shown are for an oscillation frequency of ω = 50 Hz (T = 20 ms).
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changes in α than a high spike threshold decoder.

Moreover, we found that if α and β are varied si-
multaneously, with the ratio α

β held fixed, then phase-
delayed inhibition is even more robust – remarkably,
the synchrony threshold remains untouched over a
vast range of α and β values. In fact, as demon-
strated by the analytically derived results in figure
7B, the synchrony threshold rapidly approaches an
asymptotic value as α and β rise with the ratio α

β
kept constant. Figure 8B provides a computational
complement to the analytic approach. In figure 8B,
we simultaneously vary the strength of excitation α
and the amplitude of inhibition β with the ratio of the
two held fixed at α

β = 1. Figure 8B shows that phase-
delayed inhibition creates a synchrony threshold that
is staggeringly robust to changes in α when α and β
co-vary. This behavior occurs because a fixed value
of α

β implies that the ratio of the time interval over
which excitatory inputs decay to the time interval
over which inhibitory inputs decay remains constant
(if αβ = 1, then excitatory and inhibitory inputs decay

over similar time intervals). Thus, with α
β fixed, the

length of inhibitory input currents h is the sole deter-
minant of the relative time course of inhibition and
excitation, implying that the value of the synchrony
threshold depends on h alone. This is assuming, as
we have, that the length of excitatory input currents
c is held constant (it is really the ratio h

c that deter-
mines the synchrony threshold). Note that this result
implies that the more realistic integrate-and-fire de-
coder behaves in a virtually identical manner to our
simplified decoder model given by a numerical thresh-
old Θ imposed on the sum of step function inputs; fix-
ing the ratio α

β effectively disentangles the amplitude
from the time course of synaptic modulations of the
integrate-and-fire decoder, and, as seen with the sim-
plified decoder model, the synchrony threshold in the
integrate-and-fire decoder is seen to exhibit a critical
dependence on the time course of inputs alone (with
the amplitude having little impact).

2.3.2.2 Input Number: Phase-delayed inhibi-
tion (with a low decoder spike threshold) allows for
the creation of a dynamic synchrony filter capa-
ble of adapting to fluctuating input, while impos-

ing a high spike threshold on the decoder (with-
out phase-delayed inhibition) creates a stringent filter
that is unable to dynamically accomodate variations
in presynaptic activity. If a read-out cell receives in-
put from n encoders, then, in a noisy neuronal sys-
tem, the actual number of encoder spikes may vary
considerably from one oscillation cycle to the next.
A high spike threshold implies that a certain num-
ber, say m, of those n encoders must fire concur-
rently in order to drive the decoder. This number
m is invariant – regardless of how many of the n en-
coders fire during an oscillation period, at least m
of these encoders must spike coherently to activate
the read-out neuron. The level of synchrony (i.e.,
the fraction of input spikes that are coincident) re-
quired to drive the decoder therefore depends on the
total number of encoders that fire during any given
oscillation period. If a relatively small number of en-
coders fire during a given oscillation cycle, then a
high proportion of them must be coincident to cause
the decoder to spike, while if a relatively large num-
ber of encoders fire during a given oscillation cycle,
a smaller fraction of them must be synchronous in
order to activate the decoder. Phase-delayed inhibi-
tion, on the other hand, creates a read-out cell with
a bona-fide synchrony threshold: irrespective of the
exact number of encoder spikes during any particu-
lar oscillation period, a fixed fraction of those input
spikes must temporally coincide in order to trigger
the decoder. In figure 8C, we fix α, β, and n (so
that the strength of each excitatory encoder input
is fixed at α

n and the amplitude of each inhibitory

interneuron input is fixed at β
n ), and we vary the

number k of the n encoders that fire during an oscil-
lation cycle. Figure 8C shows (computationally) that
the synchrony threshold of the high spike threshold
decoder is highly sensitive to variations in k, while
the synchrony threshold of the phase-delayed inhibi-
tion decoder exhibits minimal shifts with even large
changes in k.
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2.4 Synchrony Filtering in Noisy Net-
works

In the above investigation on the integrate-and-fire
decoder model, we made several biologically unreal-
istic assumptions in order to simplify analysis, allow-
ing us to provide intuitively transparent results on
the synchrony filtering properties of phase-delayed
inhibition versus a high spike threshold. However,
it is important to verify that the results obtained
under these simplifying assumptions are applicable
in a more biologically realistic setting. In this sec-
tion, we obtain results using the integrate-and-fire
decoder model with encoder and inhibitory interneu-
ron inputs contructed in a more biologically realistic
manner.

In the above results, encoder spike phases were de-
terministically distributed throughout a T ms period,
with increasing synchrony simulated by distributing
spike phases evenly throughout smaller and smaller
subintervals of the T ms period. Biological networks,
however, are inherently noisy, and hence in this sec-
tion we distribute encoder spike phases in a stochastic
manner. We simulate a synchrony level of s = 0 by
drawing encoder spike phases from a Gaussian dis-
trubtion centered at the midpoint of a T ms period
with a standard deviation of T ms; as the level of syn-
chrony is increased from s = 0 to s = 1, the standard
deviation of the Gaussian is decreased linearly from
T to 0 ms. Moreover, in the above results we sim-
ulated encoder and inhibitory interneuron spikes as
step function inputs to the integrate-and-fire decoder,
with α,β denoting the amplitude and c,h denoting the
time course of the encoder and inhibitory interneu-
ron input step functions, respectively. A more real-
istic description of synaptic inputs is given by a step
function jump followed by exponential decay (Roth
and van Rossum, 2009). In this section, we therefore
simulate synaptic inputs to the integrate-and-fire de-
coder in a more realistic manner, with α,β denoting
the size of the step function jump and c,h denoting
the time scale of exponential decay of encoder and in-
hibitory interneuron inputs, respectively. Addition-
ally, for further realism we incorporate stochasticity
into the synaptic delay d between the arrival times of
encoder and inhibitory interneuron inputs by draw-

Figure 9: Synchrony filtering using an integrate-and-
fire decoder in a noisy, biologically realistic network
(see text for model details). Similar to the determin-
istic case, the decoder possesses a sharp synchrony
threshold, with the value of the synchrony threshold
increasing with increases in the amplitude (β = 4 to
β = 5) or time course (h = 3 to h = 4) of inhibition
(top left). Synchrony filtering is shown for varying
encoder numbers n (top right) and for varying de-
grees of stochasticity in the synaptic delay (bottom
left; synaptic delays are drawn from a Gaussian dis-
tribution with mean 3 ms and different standard devi-
ations), and a varying probability of synaptic failure
(bottom right; failure probability shown as a percent-
age). Data shown are for an oscillation frequency of
ω = 50 Hz (T = 20 ms).

ing d from a Gaussian distrubution with mean 3 ms
and standard deviation denoted by delaysd. Finally,
since in a realistic setting each encoder spike may not
elicit an inhibitory interneuron spike, we set a prob-
ability of synaptic failure of inhibitory interneuron
spikes, with the parameter fail (written as a per-
centage) denoting the chance that an encoder spike
does not elicit a corresponding inhibitory interneuron
spike.

In the simulations presented in this section, stan-
dard values of the network parameters mentioned
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above are given by the following: α = β = 4,
c = h = 3 ms, delaysd = 1 ms, fail = 2%. The
standard number of encoders is set at n = 100 and
the oscillation period is set at T = 20 ms. Unless
otherwise stated, all simulations are performed with
these standard parameter values.

In figure 9, we plot simulation results on the syn-
chrony filtering properties of an integrate-and-fire
decoder employing phase-delayed inhibition in this
more biologically realistic setting. Figure 9 (top
left) shows that, while synchrony response curves are
noisy, the decoder continues to exhibit sharp syn-
chrony filtering properties, with increases in the am-
plitude β or decay time scale h of inhibition caus-
ing a rightward shift in the value of the synchrony
threshold. However, as shown in the top right panel,
a larger number n of encoder neurons and inhibitory
interneurons is required to achieve a sharp synchrony
threshold than in the simplified model presented in
the previous section (in the biologically realistic set-
ting, a minimum of ∼n = 40 is needed, while in the
simplified model of the previous section a minimum
of ∼n = 10 is required). This discrepancy can be
explained by the stochastic nature of encoder spike
phases in the biologically realistic setting – a larger
number of cells n is required in order for the de-
coder to be able to respond to the mean behavior
of arrival times of encoder and inhibitory interneu-
ron spikes. In the bottom left panel, we show that
significant variations in delaysd have little effect on
the synchrony filtering properties of the decoder, im-
plying that while a synaptic delay between excitatory
and inhibitory inputs is needed, the exact value of the
synaptic delay has little bearing on the response prop-
erties of the decoder. In the bottom right panel, we
show that increasing the synaptic failure parameter
fail reduces the sharpness of the synchrony threshold
– this occurs because a higher level of synaptic fail-
ure diminishes the net inhibition impinging upon the
deocder, mitigating the efficacy of the phase-delayed
inhibition architecture.

In figure 10, we compare the synchrony filtering
properties of a decoder employing phase-delayed in-
hibition versus a decoder utilizing a high spike thresh-
old in a biologically realistic setting. In the left panel,
we show that a decoder employing phase-delayed in-

hibition exhibits incredibly robust synchrony filter-
ing properties in the case that excitation and inhibi-
tion are balanced (i.e., if the ratio α

β is held fixed).
This is consistent with the results from the previ-
ous section, implying that phase-delayed inhibition
(in which network architecture automatically creates
balanced levels of excitation and inhibition delivered
to the decoder) allows for strikingly sharp and robust
synchrony detection. In the right panel, we show that
a decoder employing a high spike threshold displays
no such robustness; even after fine-tuning α to cre-
ate as sharp a synchrony detector as possible, we find
that the synchrony threshold is not as sharp as in the
phase-delayed inhibition case and that the effective-
ness of synchrony filtering is dramatically diminished
by small variations in α.

Figure 10: Phase-delayed inhibition versus a high
spike threshold using an integrate-and-fire decoder
in a noisy, biologically realistic network (see text for
model details). Left: Synchrony filtering with phase-
delayed inhibition. As in the deterministic case, if
the ratio α

β is held fixed (i.e., if the decoder re-

ceives excitation and inhibition in fixed proportion),
phase-delayed inhibition creates an exceptionally ro-
bust synchrony threshold (α and β are varied from
baseline by 25% in the panel). Right: Synchrony fil-
tering with a high spike threshold. Varying the am-
plitude of excitation α by 25% causes drastic changes
in the synchrony filtering properties of the decoder.
Data shown are for an oscillation frequency of ω = 50
Hz (T = 20 ms).
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3 Discussion

Neuronal populations within a diverse array of brain
regions encode and transmit information through
synchronized oscillations, implying that a mechanism
must exist that is capable of decoding the coherent,
periodic activity of a group of neurons. Two realistic
mechanisms exist for designing such a decoder neu-
ron: 1) imposing a relatively high spike threshold on
the decoder, or 2) employing a phase-delayed inhibi-
tion network motif. The manner in which a high spike
threshold can create a decoder neuron that acts as a
coincidence detector is obvious. In this work, we have
shown that phase-delayed inhibition can also enable a
decoder to act as a high-pass synchrony filter, in the
sense that below a threshold level of input synchrony,
the spiking response of the read-out cell is virtually
nonexistent, but as soon as the inputs exceed this
synchrony threshold the decoder’s response jumps to
high values. Moreover, we have demonstrated that
the the time course of inhibition plays a pivotal role
in determinining the synchrony threshold.

Furthermore, we have shown that phase-delayed in-
hibition provides for more robust synchrony filtering
than a high spike threshold, explaining its utilization
despite the neccesity for a more intricate network ar-
chitecture. Phase-delayed inhibition was found to be
more robust to fluctuations in both input strength
and input number than a high spike threshold. Ro-
bustness to input number is a particularly important
quality, since a decoder of synchronized oscillations
in a real neuronal system is likely to receive a vari-
able number of encoder spikes from one oscillation
period to the next. With phase-delayed inhibition,
the decoder requires a particular minimum level of
synchrony among its inputs (i.e., a fixed fraction of
input spikes must temporally overlap), regardless of
the exact number of encoder spikes impinging upon
the decoder. In contrast, a high spike threshold cre-
ates a decoder whose synchrony filtering properties
vary drastically with fluctuations in the number of
encoder spikes.

Thus, phase-delayed inhibition can be viewed as
adaptively regulating the effective spike threshold of
the decoder to filter out background noise. In the
presence of a small amount of background encoder

noise, phase-delayed inhibition sets the spike thresh-
old of the decoder at a relatively low value (i.e., a
small number of synchronous encoder spikes must
occur in order to activate the decoder). In the pres-
ence of a large amount of background encoder noise,
phase-delayed inhibition sets the spike threshold of
the decoder at a relatively high value (i.e., a large
number of coincident encoder spikes are required in
order to trigger the decoder). This type of adap-
tive regulation of the read-out cells’s spike threshold
can also be attained by using a high spike thresh-
old decoder (without inhibition) to detect synchrony,
provided that the strength of excitatory synapses is
plastic; if the strength of excitatory synapses varies
inversely with the net amount of encoder activity, a
high spike threshold decoder may be able to perform
the same computations as a phase-delayed inhibition
decoder. The likely advantage of using phase-delayed
inhibition, rather than a high spike threshold decoder
with plastic synapses, is that phase-delayed inhibi-
tion allows essentially instantaneous regulation of
the effective spike threshold of the decoder, while
synaptic plasticity requires time in order to respond
to a particular level of net encoder activity. In sys-
tems that exhibit synchronized oscillations, encoder
activity may vary considerably from one oscillation
cycle to the next, and so a mechanism that instanta-
neously tracks changing levels of net encoder activity
(such as phase-delayed inhibition) would be far bet-
ter than a mechanism which tracks changing levels
of net encoder activity more slowly (such as a high
spike threshold decoder with synaptic plasticity).

3.1 Decoder Models

In our investigations, we used both a simplified model
of decoder activity (a threshold Θ imposed on the
sum of the step function inputs) as well as a more re-
alistic integrate-and-fire read-out neuron model. Per-
haps surprisingly, the results obtained using the sim-
plfiied model were highly concordant with those pro-
duced by the more realistic model, suggesting that,
for certain purposes, step function inputs along with
an arbitrarily imposed threshold may provide an ac-
ccessible yet accurate approximation to neuronal ac-
tivity. One essential advantage of the simplified
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model is the ability to cleanly tease apart the ampli-
tude from the time course of an input, which allowed
us to generate clear-cut results on the individual ef-
fects of β or h. With an integrate-and-fire decoder,
however, the time course and magnitude of an input
are inextricably linked; since the membrane potential
V (t) exhibits non-instantaneous dynamics, large in-
puts take longer to decay than smaller inputs. Thus,
the consequences of varying β versus those of chang-
ing h are intermingled (compare figures 3 and 6).

3.2 Other Modeling Work

There is a vast body of prior work on balanced net-
works (i.e., networks in which neurons receive pro-
portional amounts of excitation and inhibition). In
a balanced network, the mean level of inhibition im-
pinging upon a neuron tends to cancel the mean level
of incoming excitation – a neuron therefore spikes
sporadically and irregularly, when an instantaneous
fluctuation in the net inhibitory and/or net excita-
tory current to the cell allows its membrane potential
to climb to threshold (e.g., see Shadlen and Newsome,
1994; Troyer and Miller, 1997; Amit and Brunel,
1997; van Vreeswijk and Sompolinsky, 1996; Brunel,
2000; Kumar et al., 2008, Vogels and Abbott, 2009).
The principle of balanced excitation and inhibition
applies to the phase-delayed inhibition architecture.
The decoder neuron within a phase-delayed inhibi-
tion scheme receives proportional amounts of excita-
tion and inhibition, with the mean level of inhibitory
interneuron input canceling the mean level of exci-
tatory encoder input, and the decoder fires only if
encoder synchrony causes large moment-to-moment
fluctuations in the net amount of excitation and in-
hibition to the decoder.

Burck and van Hemmen (2009) studied phase-
delayed inhibition using a mathematical approach.
These authors modeled a population of input and
output neurons as inhomogeneous Poisson processes,
with spikes of the input population feeding both ex-
citation and temporally lagging inhibition to the out-
put population. The activity of the input population
was oscillatory, and the authors studied the depen-
dence of the preferred frequency of the output pop-
ulation on the time constant of excitation, the time

constant of inhibition, and the delay between excita-
tion and inhibition. Kremkow et al. (2010a,2010b)
constructed a computational neuronal network model
to show that the presence of inhibition staggered in
time can suppress the response of a read-out neuron
to asynchronous inputs, as well as sharpen the tem-
poral precision of read-out cell spikes. Moreover, the
authors show that embedding time-delayed feedfor-
ward inhibition within a synfire chain allows selective
propagation of synchronous inputs, and further that
embedding the phase-delayed inhibition architecture
within a larger network provides a method for gat-
ing of incoming signals. Akam and Kullmann (2010)
also adopted a computational approach, and showed
that a network of inhibitory interneurons that sup-
ply feedforward inhibition with a temporal delay can
allow selective transmission of a synchronized, oscil-
lating input (within a particular frequency band) in
the presence of several asynchronous distractor stim-
uli. Assisi et al. (2007) showed that a circuit uti-
lizing phase-delayed inhibition can maintain sparse
read-out cell activity over a broad range of stimulus
intensities (see below). The authors of the present
paper have shown in other work that stimuli encoded
by synchronous activity of a neuronal population can
be decoded in both a reliable and stimulus-specific
manner by a phase-delayed inhibition architecture,
but not by a decoder employing a high spike thresh-
old (Joshi and Patel, 2013). However, these models,
while examining properties of phase-delayed inhibi-
tion and exploring its possible physiological roles, do
not address the fundamental computation performed
by the phase-delayed inhibition architecture. In this
paper, we frame the problem of phase-delayed inhi-
bition in its most mathematically simplified form, al-
lowing us to precisely delineate the nature of the com-
putation performed by a synchrony detection mech-
anism employing phase-delayed inhibition.

3.3 Real Neural Systems

The phase-delayed inhibition motif likely exists in a
variety of neural systems as a means to decode syn-
chronized oscillations; two representative examples
include the locust olfactory system and the barn owl
optic tectum. The locust antennal lobe (AL) receives
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direct input from olfactory receptor cells and exhibits
a 20 Hz network oscillation in response to odor stimu-
lation, with odor features modulating the identity of
active neurons but having no effect on oscillation fre-
quency (Laurent and Naraghi, 1994; Mazor and Lau-
rent, 2005; Wehr and Laurent, 1996). Approximately
800 excitatory projection neurons (PNs) within the
AL project to a large array of ∼ 50,000 Kenyon cells
(KCs), with each KC reading from ∼ 400 PNs (Jort-
ner et al., 2007). PN axons also innervate the lateral
horn, a structure consisting of GABAergic interneu-
rons which may supply vigorous, phase-delayed inhi-
bition to the KC decoders (Leitch and Laurent, 1996;
Perez-Orive et al., 2002). Prior modeling work has
shown that this feedforward inhibitory circuit may
contribute to KC coincidence detection properties
and in maintaining sparse KC odor representations
over a broad range of odorant concentrations (Assisi
et al., 2007; Perez-Orive et al., 2004). This result
is encompassed by the more general investigation of
phase-delayed inhibition carried out in this paper; our
results show that decoder activity jumps and rapidly
saturates once the inputs exceed a certain threshold
level of synchrony, and since increasing odorant con-
centration increases PN synchrony within the locust
AL, our results imply that KC responses will remain
invariant to changes in odor concentration (so long as
PN synchrony exceeds a threshold value). Examina-
tion of KC odor representations in light of the prin-
ciples of phase-delayed inhibition presented in this
paper may yield further insights into this system.

Within the deep layers of the barn owl optic tec-
tum (OT), cells respond to both visual and auditory
stimuli and are topographically organized, with ad-
jacent cells displaying neighboring spatial receptive
fields (Knudsen, 1982; Knudsen, 1983; Knudsen and
Brainard, 1991; Knudsen and Knudsen, 1983). Au-
ditory and visual stimuli within a restricted region
of space elicit coordinated, 25-90 Hz gamma oscilla-
tions in cells located at the corresponding location
within the topographically organized OT. Interest-
ingly, the spatial tuning curve and contrast-response
function of an OT site vary depending on whether re-
sponses are measured in terms of firing rate or gamma
power, suggesting that spike rate and gamma oscil-
lations may be used to relay information in paral-

lel (Patel and Reed, 2013; Sridharan et al., 2011).
Tectal fibers stream towards the nucleus rotundus of
the thalamus, emanating collaterals en-route to in-
nervate the GABAergic pretectal nuclei, whose axons
course towards rotundal cells as well (Benowitz and
Karten, 1976; Deng and Rogers, 1998; Karten et al.,
1997; Karten and Revzin, 1966; Luksch et al., 1998;
Mpodozis et al., 1996; Tombol et al., 1994). Neurons
of the nucleus rotundus are therefore in an ideal po-
sition to use phase-delayed inhibition to selectively
decode the synchronized gamma oscillations of their
tectal inputs (Patel and Reed, 2013).

In addition providing a method for deciphering pe-
riodic network behavior, phase-delayed inhibition has
also been shown to assist in the decoding of popula-
tion activity that is not necessarily oscillatory. In
these cases, phase-delayed inhibition may still play a
similar role in allowing a read-out cell to act as a coin-
cidence detector or shortening the temporal window
over which a read-out neuron can integrate excitatory
inputs. Hippocampal pyramidal neurons have been
shown to receive direct excitation via Schaffer collat-
erals as well as disynaptic inhibition from the same
source with a time delay of ∼ 2 ms, causing these cells
to behave as coincidence detectors (Fricker and Miles,
2000; Pouille and Scanziani, 2001). Within the au-
ditory cortex, investigators have demonstrated that
excitatory and inhibitory inputs to cortical cells have
similar frequency and intensity tuning; inhibitory in-
puts, however, arrive with a 1-4 ms delay relative to
excitatory inputs, sharpening the temporal precision
of cortical cell spikes (Wehr and Zador, 2003). The
cerebellum is thought to play a crucial role in the co-
ordination of movements over millisecond time scales,
and to that end cerebellar Purkinje cells are thought
to act as precise coincidence detectors within a circuit
employing phase-delayed inhibition. Parallel fibers
produce direct excitation, as well as indirect inhibi-
tion via molecular layer interneurons, within Purk-
inje cells, with excitation preceding inhibition by 1-2
ms (Mittmann et al., 2005). Phase-delayed inhibi-
tion has also been observed within the lateral genic-
ulate nucleus (LGN) of the thalamus. Within LGN
neurons, IPSPs have been recorded that are locked
to EPSPs induced by retinal ganglion cells (RGC),
in the sense that each EPSP is followed with a 1
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ms time lag by an IPSP; furthermore, these locked
IPSPs have been shown to sharply curtail the time
window over which LGN neurons can respond to ex-
citation, enhancing the temporal precision of LGN
spiking (Blitz and Regehr, 2005).

In this paper, we studied phase-delayed inhibition
as a method for decoding synchronized oscillations,
and we therefore derived results in the steady-state
case (i.e., we discarded the first few oscillation cycles
in order to disregard the initial transient behavior of
the decoder). In systems that utilize phase-delayed
inhibition without oscillations, the effects of inhibi-
tion are likely to be better described by the initial
transient behavior of the decoder (i.e., by the decoder
response within the first oscillation cycle). In prelim-
inary investigations, we have seen that similar gen-
eral principles to those presented in this paper may
govern the initial transient behavior of the decoder.

Finally, it would be a relatively simple matter to
experimentally verify the results presented in this pa-
per. Using an in vitro preparation, an investigator
could simulate encoder and interneuron inputs by in-
jecting excitatory and inhibitory current pulses into a
single neuron. By appropriately modulating the tim-
ing and amplitude of the current pulses, the spiking
activity of the neuron would then be indicative of the
response of a decoder of phase-delayed inhibition.

4 Methods

The construction of step function inputs, and the sim-
plified decoder model in which we impose a numerical
threshold Θ on the step function sum, are described
in full detail in the Model Construction section of
the Results. The integrate-and-fire decoder model
was governed by the following equation:

dV

dt
= −gV + i(t),

where V (t) is the membrane potential, g is the leak
conductance, and V0 = 0 is the resting potential. The
model is nondimensionalized, with g = 0.05 ms−1, a
nondimensional membrane potential, time in units of
ms, and the synaptic input i(t) having units of ms−1.
A spike was recorded when V (t) reached a threshold

value Vthresh = 1, with V (t) being instantaneously
reset to rest following a spike. An absolute refractory
period of 2 ms was simulated by holding the mem-
brane potential at rest for 2 ms following a spike.
Simulations were also performed with no refractory
period and a refractory period of 1 ms, which yielded
similar results. Details of the nondimensional model
are given in Tao et al. (2004).

We chose an integrate-and-fire model because we
were primarily concerned with the number of spikes
generated, rather than the precise timing of individ-
ual spikes, and hence detailed modeling of a spike
generation mechanism was unnecessary. Addition-
ally, we modeled synaptic inputs as current-based,
rather than conductance-based, in order to simplify
the mathematical analysis that we carry out in the
Results section. All simulations were also performed
using conductance-based inputs, which yielded simi-
lar results.

The synaptic input i(t) was described as the sum of
the excitatory and inhibitory step function inputs to
the neuron, as described in the Results. Spike rates
were measured by averaging over ∼ 5 oscillation cy-
cles, after discarding the first several oscillation cycles
in order to ignore the initial transient and to measure
only steady-state responses. Simulations were carried
out using the explicit Euler method with a time step
of 0.001 ms. The small time step required for conver-
gence of the numerical method was a consequence of
the discontinuous synaptic inputs.
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Supplementary Material

In this section we describe the analytic derivation of the synchrony threshold of the integrate-and-fire decoder.
In particular, we derive the function αc(s), where αc is the critical value of α at which the decoder transitions
from quiescence to spiking, and s is the level of synchrony among the encoders.

Recall from Section 2.3 that i(t) =
∑n
j=1 ij(t) is the total input current from n excitatory encoder neurons

and n inhibitory interneurons. The effective j-th input is the sum of the excitation from the j-th encoder
and the inhibition from the corresponding j-th interneuron.

ij(t) =


α/n, if t (mod T ) ∈ (ϕj , ϕj + c)

−β/n, if t (mod T ) ∈ (ϕj + c, ϕj + c+ h)

0, elsewhere

where α, β, c, h, T > 0, c+h < T and ϕj is the relative phase of the j-th neuron with ϕ1 := 0. For simplicity,
we assume the phases to be uniformly distributed over a ‘window’ of size w < T , so that ϕj = −(j− 1)w/n.

In the limit n→∞, assuming that the readout neuron voltage V (t) remains below the spike threshold of
Vthresh = 1 for all time, the time course of the voltage of the readout neuron is governed by the following
equations:

V̇ (t) = −gV (t) + i(t) (2)

i(t) =
1

w

∫ t+w

t

I(u)du , where (3)

I(t) =


α, if t (mod T ) ∈ (0,+c)

−β, if t (mod T ) ∈ (c, c+ h)

0, if t (mod T ) ∈ (c+ h, T )

1. Assuming that the parameters are such that V (t) remains below Vthresh = 1 for all time t, the system
follows equations (1) and (2).

2. We are only interested in the steady-state behavior of the readout neuron, so we look for solutions of
the differential equations which have the same periodic behavior as i(t); in other words, the solution
V (t) has the property that V (t + T ) = V (t) for all time t. All initial conditions result in the solution
converging to this periodic solution.

3. The condition that V (t) < Vthresh is equivalent to the condition that the maximum value of the voltage
(Vmax) on a single period is less than the spiking threshold Vthresh. We impose this condition to obtain
the relation between α and the other parameters to ensure that the readout neuron does not spike.

We now state the no spiking condition (refer to Theorem 1). When the parameters satisfy the no spiking
inequality (corresponding to Vmax < 1), the read-out neuron does not fire any spikes once the potential
has converged to steady state behavior. In other words, the read-out neuron is quiescent (after the initial
transient). On the other hand, if Vmax ≥ 1, then the read-out neuron fires repetitively. In the following,
we define the synchrony parameter s := 1 − w/T ∈ (0, 1). s = 1 indicates perfect synchrony (where all
the inputs have the same phase) while s = 0 indicates perfect discordance (where the phases are uniformly
distributed over the entire period).
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Theorem 4.1 (No spiking condition). Let s > 1− h/T . Let

V (α, s) :=
α

g
− α+ β

g2T (1− s)
ln

[
1 +

egT (1−s) − 1

egT − 1

(
α(eg(T−c) − 1) + β(egh − 1)

α+ β

)]
(4)

and let αc(s) be the implicitly defined function whose graph is the curve V (αc, s) = 1. In fact, if α and β
co-vary then by defining κ := β/α the critical excitation strength may be explicitly written as

αc(s) =

(
1

g
− 1 + κ

g2T (1− s)
ln

[
1 +

egT (1−s) − 1

egT − 1

(
(eg(T−c) − 1) + κ(egh − 1)

1 + κ

)])−1

(5)

If α

{
< αc(s) the readout neuron does not spike

≥ αc(s) the readout neuron spikes repetitively
(6)

We will first state and prove an algorithm for deriving the condition on the input current i(t) such that
the readout neuron is in quiescent mode. A particular application of the algorithm results in a proof of the
Theorem (no spiking condition) stated above. We will apply the algorithm to the two special cases where
0 < w ≤ c and c < w ≤ h.

Nondimensionalizing time t allows us to eliminate the conductance parameter g. We use a tilde (∼) to
indicate the nondimensional variables and parameters. In terms of the original dimensional quantities we
have t̃ = gt, w̃ = gw, T̃ = gT, c̃ = gc, h̃ = gh, α̃ = α/g, β̃ = β/g. Let ĩ(t̃) be the current in terms of the
nondimensional variables. The fully nondimensional leaky integrate and fire model is

dV

dt̃
= −V + ĩ(t̃) (7)

with a reset to V (t̃+) = V0 when V (t̃) = Vthresh > V0. For convenience, we will drop the tilde from now on.
We now state the above-mentioned algorithm.
Algorithm (Output: No spiking condition) The algorithm produces a condition on parameter values

such that the neuron is quiescent, after a possible initial transient. Fix w > 0. Let t̄ be such that V (t̄) ≥ V (t)
for all t. Let p be an interval containing t̄ where i(t) is continuously differentiable and let t0 be the left
end-point of p.

Step 1. Pick an interval q as a first guess for an interval which contains t̄ and such that i(t) is continuously
differentiable on q. Let s0 be the left end-point of q.

Step 2. Calculate f(s0, w) and f(s0, T ) where f(t, x) :=
e−t

ex − 1

∫ t+x

t

I(s)esds.

Step 3. V̇ (s+0 ) =
1− e−w

w
(f(s0, w)− f(s0, T )).

Step 4. Let t̂ = s0 + ln

(
1− V̇ (s+0 )

i̇(s+0 )

)
. If t̂ ∈ q then t̄ = t̂, p = q, and t0 = s0. If t̂ /∈ q, then go to Step 1.

Step 5. The no spiking condition is given by: i(t0) + i̇(t+0 )(t̄− t0) < 1.
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In Lemma 4.2 and Theorems 4.3 through 4.5, we provide the proof of the above algorithm. Depending
on the input current i(t), the readout neuron can be either in repetitive firing mode or quiescent mode.
We wish to find conditions on the input current i(t) or alternatively on the parameters α, β, c, h, T, w which
determine the mode of firing or quiescence.

Lemma 4.2. Let tsim denote a (sufficiently long) time period of simulation. The readout neuron fires no
spikes after some initial time period tinit < tsim if and only if Vmax < Vthresh where Vmax is the maximum
value of the voltage over (tinit, tsim).

Proof. Suppose that the neuron is in quiescence mode. In this case the voltage satisfies the following ordinary
differential equation (8) where the input current is given by (9).

V̇ (t) = −V (t) + i(t) (8)

i(t) =
1

w

∫ t+w

t

I(u)du , where (9)

I(t) =


α, if t (mod T ) ∈ (0,+c)

−β, if t (mod T ) ∈ (c, c+ h)

0, if t (mod T ) ∈ (c+ h, T )

The particular solution for any initial condition converges to the steady state solution which is a unique
solution with period T , the period of the input current. Because the neuron is quiescent we must have
Vmax < Vthresh.

Conversely if for all tinit, Vmax(t ∈ (tinit, tsim)) ≥ Vthresh, then the neuron is in repetitive firing mode.

Lemma 4.2 tells us that to identify the parameter regime for quiescence, we only need to solve (8) and (9)
and impose the condition that for all time t, V (t) < Vthresh.

Theorem 4.3. The general solution to (8) is

V (t) = e−t
(∫ t

x

eui(u)du+ V (x)ex
)

for all x ∈ R (10)

and the particular solution with the periodicity condition V (t+ T ) = V (t) is

V (t) =
e−t

eT − 1

∫ t+T

t

eui(u)du (11)

Proof. The expression in (10) is a well-known result. Replace x by t and t by t + T in (10) to get V (t) =

V (t+ T ) = e−(t+T )

(∫ t+T

t

eui(u)du+ V (t)et

)
. Solve for V (t) to get (11).

Theorem 4.4. Let f(t, x) :=
e−t

ex − 1

∫ t+x

t

I(s)esds. The particular solution to (8) and (9) with the period-

icity condition is given by either one of the following equivalent forms

1. V (t) =
e−t

w(eT − 1)

∫ t+T

t

∫ u+w

u

euI(s)dsdu.
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2. V (t) = i(t) +
1− e−w

w
(f(t, T )− f(t, w))

3. V̇ (t) =
1− e−w

w
(f(t, w)− f(t, T ))

Proof. The first equation is a result of substituting (9) into (11). Let σx := ex − 1. In order to derive the
second equation, we change the order of integration and split the region of integration into (i) t ≤ u ≤ s, t ≤
s ≤ t+ w, (ii) s− w ≤ u ≤ s, t+ w ≤ s ≤ t+ T , and (iii) s− w ≤ u ≤ t+ T, t+ T ≤ s ≤ t+ T + w. We
integrate with respect to u to obtain

V (t) =
e−t

wσT

[∫ t+w

t

I(s)(es − et)ds+

∫ t+T

t+w

I(s)es(1− e−w)ds+

∫ t+T+w

t+T

I(s)(et+T − es−w)ds

]

=
e−t

wσT

[
−σT−w

∫ t+w

t

I(s)esds+ etσT

∫ t+w

t

I(s)ds+ e−wσw

(∫ t+T

t

−
∫ t+w

t

)
I(s)esds

]

= i(t) +
1− e−w

w

[
e−t

σT

∫ t+T

t

I(s)esds− e−t

σw

∫ t+w

t

I(s)esds

]

where in the second step we used the periodicity condition I(t + T ) = I(t). The final step is the desired
equation. Finally, the third equation is simply a consequence of the differential equation V̇ (t) = −V (t) +
i(t).

Theorem 4.5. Let t̄ be such that V (t̄) ≥ V (t) for all t. Let p be an interval containing t̄ where i(t) is
continuously differentiable and let t0 be the left end-point of p. Then

V (t̄) = i(t0) + i̇(t+0 ) ln

(
1− V̇ (t+0 )

i̇(t+0 )

)
(12)

Proof. i(t) and V (t) are continuously differentiable on p. The maximum of V (t) occurs when V̇ (t) crosses 0
from above. Based on the form of i(t), it is not too difficult to see that this occurs exactly once during any
one period and for a value of t̄ ∈ (c− w, c). On each interval q on which i(t) is continuously differentiable,
i(t) has the form λ+µt. The general solution on q is V (t) = λ+µ(t−1)+γe−t, where γ is an undetermined

constant. So V̇ (t̄) = 0 implies that t̄ = ln

(
γ

µ

)
and

V (t̄) = i(t̄) = λ+ µ ln

(
γ

µ

)
(13)

From the initial condition, V (t0) = λ+ µ(t0 − 1) + γe−t0 , we get γ = (V (t0)− i(t0) + µ)et0 = (−V̇ (t+0 ) +
i̇(t))et0 . Plugging this into (7) gives (6).

This completes the proof of the algorithm. We demonstrate the algorithm by carrying out an explicit
calculation for a couple of cases. In the following, let σx := ex − 1.
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I) 0 < w ≤ c.
In the interval t ∈ (c− w, c),

i(t) =
c

w
(α+ β)− β − 1

w
(α+ β)t

Steps 2 and 3 of the algorithm tell us that

V̇ (c− w) =
σ(w)

wσ(T )
[ασ(T − c) + βσ(h)] , i(c− w) = α

Finally Step 5 of the algorithm gives the explicit no spiking condition

α− α+ β

w
ln

[
1 +

σ(w)

σ(T )

(
ασ(T − c) + βσ(h)

α+ β

)]
< 1 (14)

II) c < w ≤ h. In the interval t ∈ (c− w, c),

i(t) =
c

w
(α+ β)− β − 1

w
(αH0(t) + β)t

where H0(t) = 1 if t ≥ 0 and 0 otherwise.

V̇ (c− w) =
1

w

(
αe−cσ(c)

(
1− σ(w)

σ(T )

)
+ β

σ(w)σ(h)

σ(T )

)
, i(c− w) =

cα

w

(a) By way of Step 1 of the algorithm, pick q = (c− w, 0). Steps 4 and 5 of the algorithm gives

t̂ = c− w + ln

[
1 +

σ(w)

βσ(T )

(
αe−cσ(c)

(
σ(T )

σ(w)
− 1

)
+ βσ(h)

)]
(15)

cα

w
− β

w
ln

[
1 +

σ(w)

βσ(T )

(
αe−cσ(c)

(
σ(T )

σ(w)
− 1

)
+ βσ(h)

)]
< 1 (16)

For sufficiently large α, say α > w/c(β + 1) − β, combining the two previous equations results in
t̂ > 0 and so p 6= (c− w, 0).

(b) We return to Step 1 of the algorithm and pick q = (0, c), Step 5 of the algorithm gives

α− α+ β

w
ln

[
1 +

σ(w)

σ(T )

(
ασ(T − c) + βσ(h)

α+ β

)]
< 1 (17)

which is the same condition as that found for 0 < w ≤ c.

We are now ready to prove the main theorem.

Theorem 4.1 (No Spiking condition). We recast one of the expressions (14) or (17) into the original dimen-
sional form and define the synchrony parameter s := 1− w/T .
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