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Abstract Chemical reaction systems are dynamical systems that arise in chem-
ical engineering and systems biology. In this work, we consider the question of
whether the minimal (in a precise sense) multistationary chemical reaction networks,
which we propose to call ‘atoms of multistationarity,’ characterize the entire set of
multistationary networks. Our main result states that the answer to this question is
‘yes’ in the context of fully open continuous-flow stirred-tank reactors (CFSTRs),
which are networks in which all chemical species take part in the inflow and outflow.
In order to prove this result, we show that if a subnetwork admits multiple steady
states, then these steady states can be lifted to a larger network, provided that the
two networks share the same stoichiometric subspace. We also prove an analogous
result when a smaller network is obtained from a larger network by ‘removing spe-
cies.’ Our results provide the mathematical foundation for a technique used by Siegal-
Gaskins et al. of establishing bistability by way of ‘network ancestry.’ Additionally,
our work provides sufficient conditions for establishing multistationarity by way of
atoms and moreover reduces the problem of classifying multistationary CFSTRs to
that of cataloging atoms of multistationarity. As an application, we enumerate and
classify all 386 bimolecular and reversible two-reaction networks. Of these, exactly
35 admit multiple positive steady states. Moreover, each admits a unique minimal
multistationary subnetwork, and these subnetworks form a poset (with respect to
the relation of ‘removing species’) which has 11 minimal elements (the atoms of
multistationarity).
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1 Introduction

This work concerns an important class of dynamical systems arising in chemical engi-
neering and systems biology, namely, chemical reaction systems. As bistable chemical
systems are thought to be the underpinnings of biochemical switches, a key question
is to determine which systems admit multiple steady states. In this work, we consider
the question of whether the minimal (in a precise sense) networks, which we propose
to call ‘atoms of multistationarity,’ characterize the entire set of multistationary net-
works. We prove that such atoms do characterize multistationarity for the case of fully
open continuous-flow stirred-tank reactors (CFSTRs), which are networks in which all
chemical species take part in the inflow and outflow (see Definition 2.4). For instance,
the five networks depicted in Fig. 1 are multistationary in the CFSTR setting, but
only one is minimal with respect to ‘removing species’ (see Theorem 7.1). Following
other analyses of small networks [13,21–25], our main application is to those CFSTRs
containing two non-flow reactions.

Chemical reaction systems are nonlinear and parametrized by unknown reaction
rate constants. Thus, determining whether a chemical reaction network admits multiple
steady states is difficult: for instance, in the mass-action kinetics setting, it requires
determining existence of multiple positive solutions to a system of polynomials with
unknown coefficients. However, various criteria have been developed that often can
answer this question. For instance, the Deficiency, Advanced Deficiency, and Higher
Deficiency Theories developed by Ellison, Feinberg, Horn, Jackson, and Ji in many
cases can affirm that a network admits multiple steady states or can rule out the

Fig. 1 We propose to call 2B → A→ A + B an ‘atom of multistationarity’; see Sect. 5
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possibility [9,11,14,15]. Similarly, the Jacobian Criterion and the more general injec-
tivity test developed by Craciun and Feinberg can preclude multiple steady states [3–
6,15,17]. These results have been implemented in the CRN Toolbox, freely available
computer software developed by Feinberg and improved by Ellison and Ji [10]. Related
software programs include BioNetX [19,20] and Chemical Reaction Network Soft-
ware for Mathematica [18].

For systems for which the above software approaches are inconclusive, Conradi
et al. advocate an approach which first determines whether certain subnetworks admit
multiple positive steady states, and if so, tests whether these instances can be lifted to
the original network [2]. Here, we too examine the topic of lifting multistationarity
from a subnetwork to an overall network: Theorem 3.1, states that this can be accom-
plished as long as the steady states of interest are nondegenerate and the two networks
share the same stoichiometric subspace. This result and its proof extend Theorem 2 in
work of Craciun and Feinberg [4]. An important consequence of our theorem is that it
provides the mathematical foundation for the technique of Siegal-Gaskins et al. which
establishes bistability by way of ‘network ancestry’ (see Remark 3.3); their method
was applied to a large class of simple gene regulatory networks [23].

A fully open continuous-flow stirred-tank reactor (CFSTR) is a network in which
all chemical species enter the system at constant rates and are removed at rates propor-
tional to their concentrations (see Definition 2.4). In the setting of these systems, we
extend our results beyond subnetworks to ‘embedded networks’ which are obtained by
removing species as well as reactions from a network (Definition 2.2). Corollary 4.6
states that if an embedded CFSTR of a CFSTR is multistationary then so is the CFSTR
itself. Therefore, the set of multistationary CFSTRs is characterized by its minimal
elements (with respect to the embedded network relation), and we pose the challenge
of characterizing these atoms. In this work, we focus on cataloging the smallest atoms.

Recent work of the first author presented a simple characterization of the one-reac-
tion fully open CFSTRs that admit multiple steady states in the mass-action kinetics
setting (Theorem 2.11) [16]. Here we consider the bimolecular two-reaction CFSTRs;
a network is ‘bimolecular’ if all of its chemical complexes contain at most two mol-
ecules. We enumerate all 386 reversible such networks. Of these, exactly 35 admit
multiple positive steady states. Moreover, each admits a unique minimal multistation-
ary sub-CFSTR, and these subnetworks form a poset with respect to the embedded
network relation that has 11 minimal elements (Theorem 7.1). These 11 networks are
precisely the CFSTR atoms of multistationarity in the bimolecular two-reaction set-
ting. Note that a similar enumeration of small bimolecular networks was undertaken
by Deckard et al. [8], from which Pantea and Craciun sampled networks to compute
the fraction of such networks that pass the Jacobian Criterion [20].

This article is organized as follows. Section 2 introduces chemical reaction systems.
Our main result for lifting multiple steady states from subnetworks, Theorem 3.1,
appears in Sect. 3. In Sect. 4, this result is extended in the case of fully open CFSTRs:
Theorem 4.2 implies that steady states from embedded CFSTRs can be lifted as well.
Section 5 introduces ‘atoms of multistationarity.’ Section 6 describes our approach to
enumerating bimolecular two-reaction networks (Algorithm 6.4), and Sect. 7 deter-
mines which such networks are multistationary in the mass-action kinetics setting
(Theorem 7.1) and displays the resulting atoms of multistationarity (Fig. 3).
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2 Chemical reaction network theory

In this section we review the standard notation and recall the classification of one-
reaction CFSTRs.

2.1 Chemical reaction networks

We begin with an example of a chemical reaction:

2X1 + X2 → X3.

Each Xi is called a chemical species, and 2X1+ X2 and X3 are called chemical com-
plexes. Assigning the reactant complex 2X1 + X2 to the vector y = (2, 1, 0) and the
product complex X3 to the vector y′ = (0, 0, 1), we can write the reaction as y→ y′.
In general we let s denote the total number of species Xi , and we consider a set of r
reactions, each denoted by

yk → y′k ,

for k ∈ {1, 2, . . . , r}, and yk, y′k ∈ Z
s≥0, with yk �= y′k . We index the entries of a

complex vector yk by writing yk = (yk1, yk2, . . . , yks) ∈ Z
s≥0, and we will call yki the

stoichiometric coefficient of species i in complex yk . For ease of notation, when there
is no need for enumeration we typically will drop the subscript k from the notation for
the complexes and reactions.

Definition 2.1 Let S = {Xi }, C = {y}, and R = {y → y′} denote finite sets of spe-
cies, complexes, and reactions, respectively. The triple {S, C,R} is called a chemical
reaction network if it satisfies the following:

1. for each complex y ∈ C, there exists a reaction in R for which y is the reactant
complex or y is the product complex, and

2. for each species Xi ∈ S, there exists a complex y ∈ C that contains Xi .

A network decouples if there exist nonempty subsets R′ ⊂ R and R′′ ⊂ R such
that R = R′ ∪̇ R′′ and such that the species involved in reactions in R′ are distinct
from those of R′′. We next define a subnetwork and the more general concept of an
‘embedded’ network,’ which was introduced by the authors in [17, §4.2]. Informally,
a network N is an embedded network of a network G if N may be obtained from G
by removing reactions and ‘removing species.’

Definition 2.2 Let G = {S, C,R} be a chemical reaction network.

1. Consider a subset of the species S ⊂ S, a subset of the complexes C ⊂ C, and a
subset of the reactions R ⊂ R.
(a) The restriction of R to S, denoted by R|S , is the set of reactions obtained

by taking the reactions in R and removing all species not in S from the
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reactant and product complexes. If a trivial reaction (one in which the reactant
and product complexes are the same) is obtained in this process, then it is
removed. Also removed are extra copies of repeated reactions. The restriction
of C to R, denoted by C |R , is the set of (reactant and product) complexes of
the reactions in R.

(b) The restriction of S to C , denoted by S|C , is the set of species that are in the
complexes in C .

2. The network obtained from G by removing a subset of species {Xi } ⊂ S is the
network

{
S \ {Xi }, C|R|S\{Xi } , R|S\{Xi }

}
.

3. A subset of the reactions R′ ⊂ R defines the subnetwork {S|C|R′ , C|R′ ,R′}.
4. Let G = {S, C,R} be a chemical reaction network. An embedded network of G,

which is defined by a subset of the species, S = {
Xi1 , Xi2 , . . . , Xik

} ⊂ S, and a
subset of the reactions, R = {

R j1, R j2 , . . . , R jl

} ⊂ R, that involve all species of
S, is the network (S, C|R|S , R|S) consisting of the reactions R|S .

Remark 2.3 We note that a network is also a subnetwork and an embedded network
of itself. In fact, any subnetwork {S|C|R′ , C|R′ ,R′} is an embedded network, namely
the one defined by the subset of species S|C|R′ and the subset of reactions R′.

We also note for readers who are familiar with species-reaction (SR) graphs that the
definitions of ‘subnetwork’ and ‘embedded network’ can be interpreted as follows.
Recall that the SR graph of a network consists of species vertices and reaction vertices,
with edges arising from reactions in the network; for details, see [5]. A subnetwork
corresponds to the subgraph of the SR graph induced by the full set of species and
the subset of reaction vertices arising from reactions in the subnetwork. As for an
embedded network, this arises as the subgraph induced by the corresponding subsets
of species and reaction nodes.

One focus of our work is on CFSTRs, which we now define.

Definition 2.4 1. A flow reaction contains only one molecule; such a reaction is
either an inflow reaction 0→ Xi or an outflow reaction Xi → 0.

2. A chemical reaction network is a continuous-flow stirred-tank reactor (CFSTR)
if it contains all outflow reactions Xi → 0 (for all Xi ∈ S). A CFSTR is fully
open if it additionally contains all inflow reactions 0 → Xi . A sub-CFSTR is a
subnetwork that is also a CFSTR.

We note that Craciun and Feinberg use the term ‘feed reactions’ for inflow reactions
and ‘true reactions’ for non-flow reactions. In chemical engineering, a CFSTR refers
to a well-mixed tank in which reactions occur. An inflow reaction represents the flow
of species (at a constant rate) into the tank in which the non-flow reactions take place,
and an outflow reaction represents the removal or degradation of a species (at rate
proportional to its concentration).
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Example 2.5 Consider the following fully open CFSTR:

0
κ1
�
κ2

A 0
κ3
�
κ4

B 0
κ5
�
κ6

C 2A
κ7
�
κ8

A + B
κ9
�
κ10

A + C.

(1)

The following sub-CFSTR arises by removing two reactions:

0
κ1
�

κ2=1
A 0

κ3
�

κ4=1
B 0

κ5
�

κ6=1
C 2A←

κ8
A + B←

κ10
A + C. (2)

Next, we obtain the following embedded network by removing species C :

0
κ1
�

κ2=1
A 0

κ3
�

κ4=1
B 2A←

κ8
A + B←

κ10
A. (3)

2.2 Dynamics and steady states

The concentration vector

x(t) = (
x1(t), x2(t), . . . , x|S|(t)

)

will track the concentration xi (t) of the i-th species at time t . A chemical reaction net-
work defines a dynamical system by way of a rate function for each reaction. In other
words, to each reaction yk → y′k we assign a smooth function Rk(·) = Ryk→y′k (·) that
satisfies the following assumption.

Assumption 2.6 For k ∈ R, Rk(·) = Ryk→y′k (·) : R
|S|
≥0 → R satisfies:

1. Ryk→y′k (·) depends explicitly upon xi only if yki �= 0.

2.
∂

∂xi
Ryk→y′k (x) ≥ 0 for those xi for which yki �= 0, and equality can hold only if

at least one coordinate of x is zero.
3. Ryk→y′k (x) = 0 if xi = 0 for some i with yki �= 0.

4. If 1 ≤ yki < y�i , then lim
xi→0

R�(x)

Rk(x)
= 0, where all other x j > 0 are held fixed in

the limit.

The final assumption simply states that if the l-th reaction demands strictly more
molecules of species Xi as inputs than does the k-th reaction, then the rate of the l-th
reaction decreases to zero faster than the k-th reaction, as xi → 0. The functions Rk

are called the kinetics of the system.

Definition 2.7 Consider a chemical reaction network
{S, C,R = {yk → y′k}

}
and a

choice of kinetics {Rk} that satisfy Assumption 2.6.
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1. The following system of ODEs defines a dynamical system is called a chemical
reaction system:

ẋ(t) =
|R|∑
k=1

Rk(x(t))(y′k − yk) =: f (x(t)) , (4)

where the second equality is a definition.
2. The stoichiometric subspace of the network is the span of all reaction vectors

y′k − yk . We will denote this space by S and its dimension by σ :

S := span
{

y′1 − y1, y′2 − y2, . . . , y′|R| − y|R|
}
⊂ R

|S|.

Note that (4) implies that a trajectory x(t) that begins at a positive vector x(0) =
c0 ∈ R

s
>0 remains in the stoichiometric compatibility class, which we denote by

P := (c0 + S) ∩ R
|S|
≥0 , (5)

for all positive time; in other words, this set P is forward-invariant with respect
to (4). Two points in the same stoichiometric compatibility class P are said to be
stoichiometrically compatible.

3. A concentration vector x ∈ R
|S|
>0 is a (positive) steady state of the system (4) if

f (x) = 0. A steady state x is nondegenerate if Im d f (x) = S. (Here, “d f (x)” is
the Jacobian matrix of f at x : the |S| × |S|-matrix whose (i, j)-th entry is equal
to the partial derivative ∂ fi

∂x j
(x)). A nondegenerate steady state x is exponentially

stable if each of the σ := dim S nonzero eigenvalues of d f (x) (viewed over the
complex numbers) has negative real part.

In the case of a CFSTR, the reaction vector for the i-th inflow reaction is the i-th
canonical basis vector of R

|S|, so the stoichiometric subspace is S = R
|S|. It follows

that for a CFSTR, the unique stoichiometric compatibility class is the nonnegative
orthant: P = R

|S|
≥0 .

An important example of kinetics is mass-action kinetics; a chemical reaction sys-
tem is said to have mass-action kinetics if all rate functions Rk take the following
multiplicative form:

Rk(x) = κk x yk1
1 x yk2

2 · · · x
yk|S|
|S| =: κk x yk , (6)

for some vector of positive reaction rate constants (κ1, κ2, . . . , κ|R|) ∈ R
|R|
>0 , with

the convention that 00 = 1. definition. It is easily verified that each Rk defined via
(6) satisfies Assumption 2.6. Combining (4) and (6) gives the following system of
mass-action ODEs:

ẋ(t) =
|R|∑
k=1

κk x(t)yk (y′k − yk) =: f (x(t)). (7)
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In the following example and all others in this work, we will label species by distinct
letters such as A, B, . . . rather than X1, X2, . . ..

Example 2.8 We now return to the CFSTR (1) in Example 2.5. The mass-action dif-
ferential equations (7) for this network are the following:

dxA

dt
= κ1 − κ2xA − κ7x2

A + κ8xAxB

dxB

dt
= κ3 − κ4xB + κ7x2

A − κ8xAxB − κ9xAxB + κ10xAxC (8)

dxC

dt
= κ5 − κ6xC + κ9xAxB − κ10xAxC .

Note that a chemical reaction network gives rise to a family of mass-action kinetics
systems parametrized by a choice of one reaction rate constant κk ∈ R>0 for each
reaction, and all reactions not in the network can be viewed as having reaction rate
constant equal to zero. We now generalize this concept of a parametrized family for
other kinetics.

Definition 2.9 1. A parametrized family of kinetics K for chemical reaction net-
works on |S| species is an assignment to each possible reaction yk → y′k (that
involves only species from S) a smooth function

R≥0 × R
S≥0 → R

S

(κk, x) �→ Rκk
k (x)

such that
(a) for κk > 0, the function Rκk

k (x) is a rate function for the reaction yk → y′k that
satisfies Assumption 2.6, and

(b) when κk = 0, then Rκk
k (x) is the zero function.

2. Let G be a chemical reaction network, and let K be a parametrized family of
kinetics on |S| species. Then G is said to admit multiple K steady states or is
K-multistationary if there exist kinetics {Rκk

k } arising from K and a stoichiometric
compatibility class P such that the resulting system (4) has two or more positive
steady states in P . Moreover, such a network is said to admit bistability if such
steady states can be found that are stable.

As noted above, an important family of kinetics K is that of mass-action kinetics;
in this case, G admits multiple mass-action steady states if there exist rate constants
κk ∈ R>0 and a stoichiometric compatibility class P such that the mass-action sys-
tem (7) admits at least two positive steady states in P .

Example 2.10 We again consider the CFSTR (1) examined in Examples 2.5 and 2.8.
Recall that for a CFSTR, the unique stoichiometric compatibility class is the nonnega-
tive orthant: here, P = R

3≥0. Therefore, our CFSTR (1) admits multiple positive mass-
action steady states if and only if there exist reaction rate constants κ1, κ2, . . . , κ10 ∈
R>0 such that the differential equations (8) have at least two positive steady states.
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Indeed, the CRN Toolbox [10] determines that when the mass-action system takes the
following rate constants:

(κ1, κ2, κ3, κ4, κ5, κ6, κ7, κ8, κ9, κ10) =
(1, 1, 1, 1, 41774.858, 1, 2.5081 ∗ 10−4, 7.3335 ∗ 10−3, 1.1614 ∗ 10−4, 7.5610 ∗ 10−5) ,

there are two steady states:

x∗ = (63.143335, 136.35902, 41577.356) and

x∗∗ = (25473.839, 1007.5644, 15295.454).

2.3 Classification of multistationary one-reaction CFSTRs

We now recall the following theorem, due to the first author:

Theorem 2.11 ([16])

1. Consider a CFSTR which contains only one non-flow reaction:

a1 X1 + a2 X2 + · · · + as Xs → b1 X1 + b2 X2 + · · · + bs Xs ,

where ai , bi ≥ 0. Then the CFSTR admits multiple positive mass-action steady
states if and only if

∑
i : bi >ai

ai > 1. Moreover, these multistationary CFSTRs
admit nondegenerate steady states.

2. Consider a CFSTR in which the only non-flow reactions consist of a pair of revers-
ible reactions:

a1 X1 + a2 X2 + · · · + as Xs � b1 X1 + b2 X2 + · · · + bs Xs ,

where ai , bi ≥ 0. The CFSTR admits multiple positive mass-action steady states
if and only if the following holds:

∑
i : bi >ai

ai > 1 or
∑

i : ai >bi

bi > 1.

Moreover, these multistationary CFSTRs admit nondegenerate steady states.

The current work was motivated by the question of whether a similar theorem
exists for the class of CFSTRs that consists of networks with two reversible nonflow
reactions and their sub-CFSTRs.

3 Lifting multistationarity from subnetworks

Consider the following question: if a subnetwork N of a network G admits multiple
positive steady states, then does G as well? Theorem 3.1 asserts that the answer to this
question is ‘yes,’ provided that the steady states are nondegenerate and the two net-
works share the same stoichiometric subspace (note that the stoichiometric subspace
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of N is always contained in that of G). The proof lifts each steady state x∗ of N to a
nearby steady state of G.

Theorem 3.1 Let N be a subnetwork of a chemical reaction network G such that they
have the same stoichiometric subspace: SN = SG. Let K be a parametrized family of
kinetics on the species of G. Then the following holds:

1. If N admits multiple nondegenerate positive K steady states, then G does as well.
Additionally, if N admits finitely many such steady states, then G admits at least
as many.

2. Moreover, if N admits multiple positive exponentially stable steady states, then G
does as well. Additionally, if N admits finitely many such steady states, then G
admits at least as many.

We note that our theorem is similar to Theorem 2 in work of Craciun and Fein-
berg [4]; their theorem allows multiple steady states to be lifted from an ‘entrapped
species’ network (that is, only certain species are in the outflow) to the corresponding
‘fully diffusive’ network (all species are in the outflow). In addition, their theorem is
stated as a contrapositive version of ours.

Our proof of Theorem 3.1 makes use of the following homotopy theory result,
which is a modified form of Theorem 1.1 in Craciun et al. [7].

Lemma 3.2 Let S ⊂ R
n be a vector subspace, let P ⊂ R

n be a polyhedron contained
in an affine translation of S, and let � ⊂ int(P) be a bounded domain in the relative
interior of P . Assume that gλ : � → S, for λ ∈ [0, 1], is a continuously-varying
family of smooth functions such that

1. for all λ ∈ [0, 1], gλ has no zeroes on the boundary of �, and
2. for λ = 0 and λ = 1, Im dgλ(x) = S for all x ∈ �.

Then the number of zeroes of g0 in � equals the number of zeroes of g1 in �.

We now prove Theorem 3.1.

Proof of Theorem 3.1 First, note that the network G and its subnetwork N must have
the same set of species S in order for their stoichiometric subspaces to coincide. We let
S denote the shared stoichiometric subspace: S := SG = SN . Now, let R′ denote the
set of reactions of G that are not in N : RG = RN ∪̇R′. We now assume that the
subnetwork N admits multiple nondegenerate positive steady states; that is, there exist
rate constants κ∗1 , κ∗2 , . . . , κ∗|RN | ∈ R>0 such that there exist distinct, stoichiometri-
cally compatible, nondegenerate positive steady states x∗ and x∗∗ of the chemical
reaction system (N , κ∗i ) arising from K. Write fN for the differential equations of
(N , κ∗i ). Now x∗ is a nondegenerate steady state, so there exists a relatively open ball
� around x∗ in the interior of P such that (1) x∗ is the unique steady state (zero of
fN ) in �, and (2) Im d fN (x) = S for all x ∈ �. Note that (2) can be accomplished
because the non-vanishing of a determinant is an open condition and because the
matrix d fN (x) varies continuously in x .
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For any vector of reaction parameters κ ∈ R
|R′|
>0 , we define the following the fol-

lowing family of functions for 0 ≤ λ ≤ 1:

gκ
λ(x) := fN (x)+

∑
k∈R′

(y′k − yk)Rλκk
k (x).

It follows that gκ
λ(x) gives the differential equations (4) of the chemical reaction sys-

tem arising from the network G and the following reaction parameters with respect to
the kinetics K:

(κ∗, κ) :=
(
κ∗1 , κ∗2 , . . . , κ∗|RN |, λκ1, λκ2, . . . , λκ|R′|

)
∈ R
|RG |
>0 . (9)

Note that gκ
0 (x) = fN (x). Next, by continuity in κ and the compactness of the bound-

ary of �, there exists a vector of reaction parameters κ† ∈ R
|R′|
>0 such that for all 0 ≤ λ,

the function gκ†

λ (x) has no zeroes on the boundary of �. By continuity in λ, and by

scaling κ† smaller if necessary, we may assume additionally that Im dx gκ†

λ (x) = S
for all x ∈ �. Therefore, Lemma 3.2 allows us to conclude that the chemical reaction
system

(
G, (κ∗, λκ†)

)
has a nondegenerate steady state in the ball � for all 0 ≤ λ ≤ 1.

We now complete the proof by repeating the argument with x̃∗∗, taking care that
the ball around x̃∗∗ does not intersect that of x̃∗; we replace κ† by a scaled-down
version (μκ† for some 0 < μ < 1) if necessary. It follows that

(
G, (κ∗, λκ†)

)
has at

least two nondegenerate steady states. The case of three or more nondegenerate steady
states generalizes in a straightforward way. For the stability result, we simply note that
the eigenvalues of a matrix vary continuously under continuous perturbations (in this
case, arising from the parameter λ). ��

Remark 3.3 One application of Theorem 3.1 is that it provides the mathematical
justification for the technique of Siegal-Gaskins et al. which establishes bistability
in the mass-action setting by way of ‘network ancestry’ [23]. In their examination
of 40,680 small gene regulatory networks, 14,721 initially were established to be
bistable by the implementation of Advanced Deficiency Theory in the CRN Tool-
box [10], and an additional 22,050 were classified as bistable by virtue of containing
one of the 14,721 bistable networks as a subnetwork (‘ancestor’) such that both net-
works have the same stoichiometric subspace. A similar approach is taken by Conradi
et al. for lifting multiple steady states from certain subnetworks called ‘elementary
flux modes’ [2]. We note that their criterion for lifting steady states does not require
that the stoichiometric subspaces of the network and its subnetwork to coincide [2,
Supporting Information].

The next example illustrates why the hypothesis of nondegeneracy is required in
Theorem 3.1. A larger such example appears in the work of Craciun and Feinberg
[4, §6].
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Example 3.4 Consider the following (non-CFSTR) network:

(10)

The CRN Toolbox [10] determines that network (10) does not admit multiple pos-
itive mass-action steady states, but the following subnetwork does admit multiple
degenerate positive steady states:

A
κ1← B

κ2→C A + C
κ3→ 2B. (11)

In fact, it is straightforward to verify that steady states exist for network (11) if and
only if κ1 = κ2, and in this case, each two-dimensional compatibility class contains
an infinite one-dimensional set of degenerate steady states.

One way for a network and its subnetwork to share the same stoichiometric subspace
is for the subnetwork to be obtained by making some reversible reactions irreversible.
Thus, Theorem 3.1 yields the following corollary.

Corollary 3.5 For a chemical reaction network N, let K be a parametrized family of
kinetics on the species of N . Let G be a network obtained from N by making some irre-
versible reactions of N reversible. Then if N admits multiple nondegenerate positive
K steady states, then G does as well.

The next corollary states that Theorem 3.1 allows multiple positive steady states
to be lifted from a sub-CFSTR to a fully open CFSTR. Therefore, the set of minimal
multistationary CFSTRs (with respect to the subnetwork relation) completely defines
the set of all fully open multistationary CFSTRs: a fully open CFSTR admits multiple
steady states if and only if it contains as a subnetwork one of these minimal CFSTRs.
This result will be useful in our classification of small multistationary CFSTRs in
Sect. 7.

Corollary 3.6 Let N be a sub-CFSTR of a fully open CFSTR G, and let K be a param-
etrized family of kinetics on the species of G. Then, if N admits multiple nondegenerate
positive K steady states, then G does as well.

Proof Assume that the species of N are X1, X2, . . . , Xs1 and the species of G are
X1, X2, . . . , Xs1+s2 . Let N ′ be the CFSTR obtained from N by appending the flow
reactions 0 � Xs1+1, 0 � Xs1+2, …, 0 � Xs1+s2 for all species of G that are
not in N . Clearly, N ′ is a subnetwork of G, and they share the same stoichiometric
subspace, namely, R

s1+s2 . By applying Theorem 3.1 to N ′ and G, we see that if N ′
admits multiple nondegenerate positive steady states, then G does as well. Therefore,
it remains only to show that N admits multiple nondegenerate positive steady states
if and only if N ′ does.
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Consider any outflow rate parameter κout
s1+i > 0 for one of the new outflow reactions.

Then by Assumption 2.6, the rate function R
Xs1+i→0

κout
s1+i

(x) depends only on xs1+i and is

increasing in xs1+i from

0 = R
Xs1+i→0

κout
s1+i

(x1, . . . , xs1+i−1, 0, xs1+i+1, . . . xs1+s2).

As for the corresponding inflow rate function, Assumption 2.6 implies that R
0→Xs1+i

κ in
s1+i

(x)

is a positive constant function, and this constant depends only on the parameter
κ in

s1+i and is in fact increasing in this parameter for sufficiently small values, with

R
0→Xs1+i

0 (x) = 0. Thus, we can choose a sufficiently small inflow parameterκ in
s1+i > 0

such that there exists a positive value x∗s1+i > 0 for which the rate functions are equal
at x when xs1+i = x∗s1+i .

Therefore, it follows that x∗ = (
x∗1 , x∗2 , . . . , x∗s1

) ∈ R
s1
>0 is a nondegenerate positive

steady state of the system
(
N , (κ1, κ2, . . . , κ|RN |)

)
if and only if the concentration

vector

(
x∗1 , x∗2 , . . . , x∗s1

, x∗s1+1, . . . , x∗s1+s2

) ∈ R
s1+s2
>0

is a nondegenerate positive steady state of the system

(
N ′, (κ1, κ2, . . . , κ|RN |, κ

in
s1+1, κ

out
s1+1 . . . , κout

s1+s2
)
)

,

where the parameters κ in
s1+i and κout

s1+i are chosen as described above. This completes
the proof. ��

4 Lifting mass-action multistationarity from embedded CFSTRs

Corollary 3.6 stated that multistationarity can be lifted from sub-CFSTRs; in this sec-
tion, we generalize the result to the case of embedded CFSTRs in the mass-action
setting (Corollary 4.6).

We first need the following generalization of inflow/outflow reactions in order to
allow for reactions such as A � 2A which also have a mass-action steady state at
xA = 1 when the two reaction rate constants are equal.

Definition 4.1 A mass-action flow-type subnetwork for a species Xi of a chemical
reaction network G is a nonempty subnetwork N of G such that

1. the reactions in N involve only species Xi , and
2. there exists a choice of reaction rate constants κ∗r for the reactions r ∈ RN of N

such that for the resulting mass-action system of this subnetwork N , xi = 1 is a
nondegenerate steady state.

The following theorem is analogous to Theorem 3.1.
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Theorem 4.2 Let N be an embedded network of a network G such that

1. the stoichiometric subspace of N is full-dimensional: SN = R
|SN |, and

2. for each species Xi that is in G but not in N, there exists a mass-action flow-type
subnetwork of G for Xi .

Then the following holds:

1. If N admits multiple nondegenerate positive mass-action steady states, then G
does as well. Additionally, if N admits finitely many such steady states, then G
admits at least as many.

2. Moreover, if N admits multiple positive exponentially stable mass-action steady
states, then G does as well. Additionally, if N admits finitely many such steady
states, then G admits at least as many.

The proof of Theorem 4.2 requires the following lemma, which states that for
certain simple embedded networks obtained by removing only one species, each non-
degenerate steady state u can be lifted to a steady state of the larger network that is
near (u, 1).

Lemma 4.3 Let G be a chemical reaction network with s species denoted by
X1, X2, . . . , Xs, and let N be an embedded network of G with s − 1 species
X1, X2, . . . , Xs−1 such that N is full-dimensional: SN = R

s−1. Assume that the reac-
tions of G and the reactions of N can be written as, respectively,
RG = {R̃1, R̃2, . . . , R̃m, Rm+1, . . . , Rm+n} and RN = {R1, R2, . . . , Rm} such that:

1. for i = 1, 2, . . . , m, the reaction Ri of N is obtained from the corresponding
reaction R̃i of G by removing species Xs, and

2. all remaining reactions of G, namely {Rm+1, Rm+2, . . . , Rm+n}, together form a
mass-action flow-type subnetwork for the species Xs.

For a choice of rate constants κ∗1 , κ∗2 , . . . , κ∗m > 0, let �
(
N , {κ∗1 , κ∗2 , . . . , κ∗m}

)
denote a finite set of nondegenerate positive mass-action steady states of the system
arising from N and the κ∗i . Then for sufficiently small ε > 0, there exist reaction
rate constants κ∗m+1, κ

∗
m+2, . . . , κ

∗
m+n for the flow-type subnetwork of G such that for

all u ∈ �
(
N , {κ∗1 , κ∗2 , . . . , κ∗m}

)
, there exists a nondegenerate positive mass-action

steady state ũ of the system arising from G and κ∗1 , κ∗2 , . . . , κ∗m+n with |̃u−(u, 1)| < ε.
Additionally, if u is exponentially stable, then ũ is as well.

Proof Fix a choice of reaction rate constants κ∗1 , κ∗2 , . . . , κ∗m , and let the set � :=
�

(
N , {κ∗1 , κ∗2 , . . . , κ∗m}

)
be as in the statement of the lemma.

We view G = Ñ ∪̇M as the disjoint union of two subnetworks, one which consists
of the reactions R̃1, R̃2, . . . , R̃m , which we denote by Ñ , and the second which consists
of Rm+1, Rm+2, . . . , Rm+n , which we denote by M . As M is a mass-action flow-type
subnetwork for the species Xs , there exist rate constants κm+1, κm+2, . . . , κm+n > 0
such that the resulting mass-action ODE system, denoted by fM (xs), has a nondegen-
erate steady state at xs = 1.
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Next, we denote by f Ñ (x) the mass-action ODE system (7) arising from the sub-
network Ñ and the fixed rate constants κ∗1 , κ∗2 , . . . , κ∗m . Consider the following map
from R≥0 × R

s≥0 to R
s :

fG(k, x) := (
f Ñ ,1(x), f Ñ ,2(x), . . . , f Ñ ,s−1(x), f Ñ ,s(x)+ k fM (xs)

)
. (12)

(Note that f Ñ ,i denotes the i-th coordinate function of f Ñ .) It follows that fG(k, x)

denotes the mass-action ODEs for the network G with respect to the rate constants
κ∗1 , κ∗2 , . . . , κ∗m, kκm+1, kκm+2, . . . kκm+n .

We scale the last coordinate of fG(k, x) by 1/k and make the substitution δ = 1/k
to obtain:

FG(δ, x) : = (
f Ñ ,1(x), . . . , f Ñ ,s−1(x), fM (xs)

)+ (
0, . . . , 0, δ f Ñ ,s(x)

)
(13)

=: h(x)+ δ
(
0, . . . , 0, f Ñ ,s(x)

)
,

where h(x) is defined by the second equality. Hence, it suffices to prove that for suf-
ficiently small ε > 0 and for all u ∈ �, there exists a δ > 0 such that there exists a
nondegenerate zero ũ of FG(δ, x) with |̃u − (u, 1)| < ε.

Fix u ∈ �. We now claim that h has a nondegenerate zero at (u, 1). The final
coordinate of h satisfies hs(u, 1) = fM (1) = 0 by construction. As for the remaining
coordinates i = 1, 2, . . . , s − 1, we compute

hi (u, 1) = f Ñ ,i (u, 1) = fN (u) = 0. (14)

We now explain the second equality in (14). When the reaction R̃ j in Ñ is ỹ j → ỹ′j
then the reaction R j , given by y j → y′j , is such that the projection of ỹ j onto

the first s − 1 coordinates is y j and similarly for ỹ′j . Thus, the reaction vector

ỹ′j− ỹ j projects to y′j−y j and (u1, u2, . . . , us−1, 1)ỹ j = (u1, u2, . . . , us−1)
y j . Finally,

(u, 1) is nondegenerate, because dh(u, 1) is an s × s-matrix in which the upper-left
(s − 1)× (s − 1)-submatrix is the nonsingular matrix d fN (u) and the bottom row is
(0, 0, . . . , 0,

d fM
dxs

(1)) with d fM
dxs

(1) �= 0 by hypothesis.
As (u, 1) is nondegenerate, there exists a constant ε(u) > 0 such that the result-

ing ε(u)-neighborhood of (u, 1), which we denote by �, is such that (1) � is in the
positive orthant R

s
>0, (2) (u, 1) is the unique zero of h in �, and (3) dh(x) is nonsin-

gular for all x ∈ �. Consider again the function FG(δ, x) defined in (13), and note
that F(0, x) = h(x). By continuity in δ and the compactness of the boundary of �,
there exists δ(u) > 0 such that for all 0 ≤ δ ≤ δ(u), the function FG(δ, x) has no
zeroes on the boundary of �. Again by continuity and by decreasing δ(u) if necessary,
we may assume that d F(δ, x) (the matrix of partial derivatives with respect to the
x1, x2, . . . , xs) is nonsingular for all 0 ≤ δ ≤ δ(u) and for all x ∈ �. Therefore,
Lemma 3.2 allows us to conclude that FG(δ, x) has a unique nondegenerate zero ũ in
� (that is, |̃u − (u, 1)| < ε(u)) for all 0 ≤ δ ≤ δ(u).

Now let ε∗ be the minimum of all such ε(u), where u ∈ �. Additionally, we
decrease ε∗ if necessary so that the resulting ε-neighborhoods of the points u do not
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intersect. The lemma now follows with the ε∗ as a cut-off: given any 0 < ε < ε∗,
the above arguments for each u can be made using ε in place of ε(u). Taking the
minimum, denoted by δ∗, of the resulting cut-offs δ(u), we obtain nondegenerate zero
ũ of FG(δ∗, x) such that |̃u − (u, 1)| < ε.

For the stability result, the eigenvalues of a matrix vary continuously under contin-
uous perturbations (in this case, arising from the parameter δ). ��
Remark 4.4 In the proof of Lemma 4.3, the s-dimensional dynamical system (12)
may be represented by

ẋ = f Ñ (x)+ kgM (xs) ,

where gM (xs) := (0, . . . , 0, fM (xs)). When k is sufficiently large and xs is in the
domain of attraction of xs = 1 with |gM (xs)| ∼ O(1), then ẋ ∼ kgM (xs), which
has dynamics close to the one-dimensional system ẋs = k fM (xs). However, when
xs is close to xs = 1 with |gM (xs)| ∼ O(1/k2), then ẋ ∼ f Ñ (x), the dynamics of
which are effectively those of an (s − 1)-dimensional system. Thus by choosing k
large enough, we achieve a time-scale separation: on the fast time-scale, the dynamics
are close to a one-dimensional system and on the slow time-scale, the dynamics are
close to an (s − 1)-dimensional system. Thus, we can lift the steady states from the
smaller system to the full system.

We can now prove Theorem 4.2.

Proof of Theorem 4.2 We begin by reducing to the case that G has only one species
that N does not have: if G has more than one additional species, we can lift multista-
tionarity ‘one species at a time.’ Now denote the species of N by X1, X2, . . . , Xs−1
and the species of G by X1, X2, . . . , Xs . Denote the reactions of N by y1 → y′1, y2 →
y′2, . . . , ym → y′m , where yi , y′i ∈ Z

s−1
≥0 . As N is an embedded network of G, we can

write the reactions of G as
RG = {R̃1, R̃2, . . . , R̃m, Rm+1, Rm+2, . . . , Rm+n, Rm+n+1, . . . , Rm+n+p} such that:

1. for i = 1, 2, . . . , m, the reaction Ri of N is obtained from the corresponding
reaction R̃i of G by removing species Xs , and

2. the reactions in {Rm+1, Rm+2, . . . , Rm+n} form a mass-action flow-type subnet-
work for the species Xs .

We now let G ′ denote the subnetwork of G that consists of the reactions
{R̃1, R̃2, . . . , R̃m, Rm+1, Rm+2, . . . , Rm+n}. Lemma 4.3 applies to this network G ′
and its embedded network N , so G ′ admits at least as many nondegenerate positive
mass-action steady states as N (and similarly for exponentially stable steady states).
Next, G ′ is a subnetwork of G that shares the same stoichiometric subspace (namely,
R

s), so by Theorem 3.1, G admits at least as many nondegenerate positive mass-action
steady states as G ′ (and similarly for exponentially stable ones), so this completes the
proof. ��

We now illustrate the necessity of the hypothesis 2 of Theorem 4.2.
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Example 4.5 Consider the following (non-CFSTR) network G, which is adapted from
a similar network that appears in work of Feinberg [12]:

0
κ1
�
κ2

A 3A
κ3
�
κ4

2A + B

A straightforward calculation reveals that G has a unique mass-action steady state,

namely (xA, xB) =
(

κ1
κ2

, κ1κ3
κ2κ4

)
. In fact, despite the fact that A participates in a non-

flow reaction, a ‘true reaction’), the steady state value of xA is the same as it would
be when considering only the flow subnetwork 0 � A. Now consider the following
embedded network N obtained by removing the species B:

0 � A 3A � 2A

We see that N satisfies the conditions of Theorem 2.11, so N admits multiple mass-
action steady states. Note that N is an embedded network of G, but its multiple steady
states can not be lifted to G; Theorem 4.2 does not apply because G does not contain
a flow-type subnetwork for the species B.

On the other hand, N is an embedded network of the following network G ′:

B � 0 � A 3A � 2A + B

which does contain a flow-type subnetwork for the species B. So, Theorem 4.2 does
apply and thus we conclude that G ′ admits multiple steady states.

We now have an analogue of Corollary 3.6.

Corollary 4.6 Let N be an embedded CFSTR of a fully open CFSTR G. Then, if N
admits multiple nondegenerate positive mass-action steady states, then G does as
well.

Proof This follow directly from Theorem 4.2, after noting that hypothesis 2 of the
theorem is satisfied by the inflow/outflow reactions 0 � Xi . ��

5 CFSTR atoms of multistationarity

In the previous section, we saw that a CFSTR is multistationary in the mass-action
setting if and only if an embedded CFSTR is multistationary; now we call the min-
imal such networks ‘atoms of multistationarity.’ In Sect. 7, we will classify certain
two-reaction atoms of multistationarity (see Corollary 7.2).

Definition 5.1 1. A fully open CFSTR is a CFSTR atom of multistationarity if it
admits multiple nondegenerate positive mass-action steady states and it is min-
imal with respect to the embedded network relation among all such fully open
CFSTRs.

2. A fully open CFSTR G is said to possess a CFSTR atom of multistationarity if
there exists an embedded network N of G that is a CFSTR atom.
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We now restate Corollary 4.6 in the following way, which motivates the above defini-
tion and suggests that compiling a list of atoms is desirable.

Corollary 5.2 A fully open CFSTR possesses a CFSTR atom of multistationarity if
and only if it admits multiple nondegenerate positive mass-action steady states.

Proof The reverse direction is clear: a multistationary CFSTR is either itself a CFSTR
atom of multistationarity or contains one. The forward direction is Corollary 4.6. ��
We also can rephrase Theorem 2.11 in the following way:

Corollary 5.3 A one-reaction CFSTR is a CFSTR atom of multistationarity if and
only if it consists of one non-flow reaction and that non-flow reaction has one of the
following two forms:

a1 X → a2 X , or X + Y → b1 X + b2Y , (15)

where a2 > a1 > 1, or, respectively, b1 > 1 and b2 > 1. A one-reaction CFSTR
possesses one such CFSTR atom of multistationarity if and only if it admits multiple
nondegenerate positive mass-action steady states.

We end this section by posing the following questions:

1. Is there a good characterization of CFSTR atoms of multistationarity? For instance,
even though there are countably infinitely many one-reaction CFSTR atoms, Cor-
ollary 5.3 gives a simple characterization of all such one-reaction atoms. In par-
ticular, a one-reaction atom contains at most two species, and furthermore each of
these atom types is characterized by exactly two parameters, (a1, a2) or (b1, b2)

in Eq. (15).
2. Is there a good notion of ‘atom of multistationarity’ outside of the CFSTR setting?

If so, then a CFSTR atom might contain as an embedded network, a more general
atom, which is obtained by removing some flow reactions and possibly more reac-
tions. For example, we can remove the outflow reaction A→ 0 from the CFSTR
atom arising from A→ 2A A+ B → 0 (see the top of Fig. 3 in the next section)
and maintain multistationarity, but removing B → 0 destroys multistationarity.

Beginning in the next section, we will give a partial answer to the first question above
for two-reaction CFSTRs.

6 Enumeration of reversible bimolecular two-reaction CFSTRs

The remainder of this work is dedicated to answering the following question:

Question 6.1 Which bimolecular two-reaction fully open CFSTRs admit multiple pos-
itive mass-action steady states?

By bimolecular we mean that each complex contains at most two molecules: the
complexes 0, A, 2A, and A + B are permitted, but 2A + B is not. A two-reaction
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CFSTR refers to a CFSTR in which the non-flow reactions consist of two pairs of
reversible reactions, one reversible reaction and one irreversible reaction, or two irre-
versible reactions. For instance, the three CFSTRs (1), (2), and (3) in Example 2.5
are among the bimolecular two-reaction CFSTRs for which we would like to answer
Question 6.1. Let us note that reactions of the form 0 � 2A or 0 � A + B (or any
of the directed versions) are considered non-flow reactions. Finally, if we define two
networks to be equivalent if there exists a relabeling of the species that transforms the
first network into the second network, we aim to list only one network from each such
equivalence class. For example, the two CFSTRs in which the non-flow reactions are
2A ← A + B ← A and C → B + C → 2C , respectively, are both in the same
equivalence class.

Note that it is sufficient to enumerate the possible non-flow subnetworks of our
CFSTRs of interest; for example, if the non-flow subnetwork is

2A← A + B ← A , (16)

then the corresponding CFSTR is obtained by including the flow reactions for spe-
cies A and B. In addition, Corollary 3.5 implies that a non-reversible CFSTR (for
example, the one arising from (16)) does not admit multiple nondegenerate positive
steady states if the corresponding reversible CFSTR (for example, the one arising from
2A � A + B � A) does not. Therefore, we will proceed to answer Question 6.1 by
completing the following steps:

1. Enumerate all reversible bimolecular two-reaction networks.
2. Determine which of the fully open CFSTRs arising from networks in Step 1 admit

multiple positive mass-action steady states.
3. Of those reversible CFSTRs that admit multiple positive steady states which were

found in Step 2, determine which sub-CFSTRs admit multiple positive steady
states.

The current section describes how we performed Step 1 (see Algorithm 6.4), and
in Sect. 7, we explain how we completed Steps 2 and 3.

6.1 The total molecularity partition of a chemical reaction network

We now explain how a network defines a ‘total molecularity partition’; two-reaction
networks will be enumerated by these partitions in Algorithm 6.4. Recall that a par-
tition of a positive integer m is an unordered collection of positive integers that sum
to m; by convention, we write the partition as (m1, m2, . . . , mn), where the parts mi

are weakly decreasing: m1 ≥ m2 ≥ · · · ≥ mn ≥ 1. Partitions of m = 4, 5, 6, 7, 8 are
listed (partially) in Table 1.

Example 6.2 Let us rewrite the network 2A � A + B � A + C as two separate
reversible reactions:

2A � A + B A + B � A + C. (17)
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Table 1 Partial list of partitions of m = 4, 5, 6, 7, 8 in lexicographic order

m Partitions of m # of partitions

4 (4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1) 5

5 (5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1) 7

6 (6), (5, 1), (4, 2), (4, 1, 1), (3, 3), (3, 2, 1),… , (1, …, 1) 11

7 (7), (6, 1), (5, 2), (5, 1, 1), (4, 3), (4, 2, 1),… , (1, …, 1) 15

8 (8), (7, 1), (6, 2), (6, 1, 1), (5, 3),… , (1, 1, 1, 1, 1, 1, 1, 1) 22

60

The numbers of partitions, which are known as the Bell numbers, are listed in the last column

Counting the number of times each species appears (where we take into consideration
the stoichiometric coefficients), we see that species A appears 5 = 2+1+1+1 times,
B appears 2 = 1 + 1 times, and C appears 1 time. Definition 6.3 will say that the
‘total molecularities’ of species A, B, and C are, respectively, 5, 2, and 1. In addition,
the ‘total molecularity partition’ of network (17) will be (5, 2, 1), which is a partition
of the integer 8 = 5+ 2+ 1. Similarly, the total molecularity partition of the network
2A � A + B � A is (5, 2), a partition of 7.

The definition of total molecularity first appeared in [17].

Definition 6.3 1. For a reversible network, the total molecularity of species X j refers
to the sum over all pairs of reversible reactions of the sum of the stoichiometric
coefficients of X j in the reactant and in the product:

TM(X j ) :=
∑

∑s
i=1 ai Xi �

∑s
i=1 bi Xi ∈ R′

a j + b j ,

where R′ denotes all pairs of reversible reactions
∑s

i=1 ai Xi �
∑s

i=1 bi Xi .
2. For a reversible network, the total molecularity partition is the partition defined

by the multiset of total molecularities of all species:

{TM(X1), TM(X2), . . . , TM(X |S|)}.

Note that for reversible bimolecular two-reaction networks, the total molecularity
partition is of an integer m ∈ {4, 5, 6, 7, 8}.

6.2 Algorithm for enumerating networks

We now present the algorithm we used for enumerating reversible bimolecular two-
reaction networks.

Algorithm 6.4 (Algorithm for enumerating reversible bimolecular two-reaction
networks)
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Table 2 Number of reversible bimolecular two-reaction CFSTRs by partition

Number of reversible bimolecular Total # # #
two-reaction networks # of with that fail with

m by partition of m networks TM > 2 Jac. Crit. MSS

4 (0,2,2,5,3) 12 2 0 0
5 (1,4,7,8,10,9,2) 41 20 8 1
6 (0,3,6,9,7,23,12,9,23,12,3) 107 60 31 5
7 (0,1,3,4,5,13,7,9,13,26,8,12,15,7,1) 124 89 55 15
8 (0,0,0,1,1,3,2,1,5,4,9,4,7,8,13,12,3,5,11,9,3,1) 102 73 48 14

386 244 142 35

The order of partitions is the lexicographic order (as in Table 1). In bold are the 142 networks for which
multistationarity is ruled out because each part of the corresponding partitions (the total molecularity of a
species, denoted by “TM”) is no more than two [17]. Of the remaining 244 networks, an additional 102
networks pass the Jacobian Criterion (those with total molecularity at most two also pass the Jacobian
Criterion). For the remaining 142 networks, the CRN Toolbox [10] determined that precisely 35 admit
multiple positive mass-action steady states (“MSS”)

Step One. List partitions of m = 4, 5, 6, 7, 8.
Step Two. For each partition (m1, m2, . . . , mn), list (with repeats) all reversible bimo-
lecular two-reaction networks in which species X1 has total molecularity m1, species
X2 has total molecularity m2, and so on.
Step Three. Remove networks that contain trivial reactions, networks that contain
repeated reactions, and decoupled networks.
Step Four. Remove redundant networks: keep exactly one representative from each
equivalence class of networks. (Recall that two networks are equivalent if there exists
a relabeling of the species that transforms the first network into the second network.)

As we see in Table 2, Algorithm 6.4 yields 386 reversible bimolecular two-reaction
networks. In Sect. 7, we determine which of the 386 CFSTRs admit multiple positive
steady states.

Let us now elaborate on our implementations of Steps Two through Four of Algo-
rithm 6.4. In order to list all reversible bimolecular two-reaction networks that have a
given partition (m1, m2, . . . , mn) (Step Two), we made use of a psuedo-species X0.
Namely, any network with partition (m1, m2, . . . , mn) arises from placing (m−m1−
m2− · · · −mn) copies of species X0, m1 copies of X1, m2 copies of X2, and so on in
the eight boxes in the following diagram:

+ � + + � +

For example, A + A � A + B A + B � X0 + A defines the network
2A � A + B � A. Clearly, this procedure will yield all networks, but certain triv-
ial networks (such as one with repeated reactions) will appear, and additionally each
network will appear more than once. Accordingly, trivial networks are removed in
Step Three of Algorithm 6.4, and Step Four keeps only one representative from each
equivalence class of networks. Step Four is the most computationally expensive part of
our enumeration. For each network remaining at the end of Step Three, we generated

123



J Math Chem

the equivalence class of networks obtained by performing a relabeling of the species.
Two networks are equivalent if and only if they generate identical equivalence classes
of networks. We removed extra copies of equivalent networks at the end of Step Four.

6.3 The enumeration of small networks of Deckard, Bergmann, and Sauro

A related (and much larger: over 47 million) enumeration of small bimolecular net-
works was undertaken by Deckard et al. [8]. Their work enumerated small networks
by the number of directed reactions and by the number of species. So, the network
2A← A+B ← A falls in their list of networks containing two directed reactions and
two species, and the network 2A � A + B ← A + C is a network containing three
directed reactions and three species. Also, their enumeration did not include seem-
ingly unrealistic chemical reactions involving the zero complex (such as 0→ 2A or
0← A+ B) or reactions in which some species appears in both the reactant complex
and product complex of a reaction (such as A→ A+ B or A→ 2A). We remark that
from this enumeration of networks by Deckard et al., the work of Pantea and Craciun
sampled networks to compute the fraction that pass the Jacobian Criterion [20, Fig. 1].

7 Classification of multistationary two-reaction CFSTRs

The main result of this section is the following theorem, which completely answers
Question 6.1:

Theorem 7.1 Of the 386 reversible, bimolecular, two-reaction fully open CFSTRs,
exactly 35 admit multiple positive mass-action steady states. Moreover, each of these
35 networks admits multiple nondegenerate positive steady states. Furthermore, each
such network contains a unique minimal multistationary subnetwork. The poset (par-
tially ordered set) of these 35 directed subnetworks, with respect to the embedded
network relation, has 11 minimal elements, which are the bimolecular two-reaction
CFSTR atoms of multistationarity.

An immediate corollary of Theorem 7.1 is the following:

Corollary 7.2 1. A bimolecular, two-reaction fully open CFSTR admits multiple
nondegenerate positive mass-action steady states if and only if it contains as
a sub-CFSTR one of the 35 minimal such subnetworks, which are displayed in
Figure 3.

2. A bimolecular, two-reaction fully open CFSTR admits multiple nondegenerate
positive mass-action steady states if and only if it contains as an embedded net-
work one of the 11 CFSTR atoms which are marked in bold/red in Fig. 3.

3. If a fully open CFSTR (not necessarily bimolecular and having any number of
reactions) G contains one of the 35 minimal CFSTRs mentioned above as a sub-
CFSTR or contains one of the 11 atoms as an embedded network, then G admits
multiple nondegenerate positive mass-action steady states.

Note that part 3 of Corollary 7.2 makes use of Corollaries 3.6 and 4.6.
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Example 7.3 Among the 35 reversible CFSTRs in Theorem 7.1 that admit multiple
steady states, one is the network (1) which we first saw in Example 2.5: it arises
from the network 2A↔ A + B ↔ A + C . The unique minimal multistationary sub-
CFSTR is the directed subnetwork (2) obtained by removing two reactions: 2A ←
A + B ← A + C . Finally, there is a multistationary embedded CFSTR (3) obtained
by removing species C , namely, the CFSTR arising from 2A← A + B ← A, that is
one of the 11 atoms.

In other words, no further embedded CFSTR is multistationarity. The directed sub-
network (2) and the embedded network (3) appear in the lower left of Fig. 3.

Sections 7.1 through 7.3 provide the proof for Theorem 7.1.

7.1 Ruling out multistationarity by the Jacobian Criterion

Recall from [3–6] that the Jacobian Criterion is a method for ruling out multistation-
arity. A CFSTR is said to pass the Jacobian Criterion if all terms in the determinant
expansion of the Jacobian matrix of its mass-action differential equations (7) have the
same sign. Craciun and Feinberg proved that if a CFSTR passes the Jacobian Crite-
rion, then it does not admit multiple positive steady states. In earlier work, the current
authors proved that if the total molecularities of all species are at most two, then the
CFSTR passes the Jacobian Criterion [17]. Accordingly, any two-reaction networks
that arise from the 19 partitions (of 4, 5, 6, 7, or 8) in which all parts are at most two
automatically pass the Jacobian Criterion; these 142 networks are marked in bold in
Table 2. Of the remaining 244 = 386 − 142 networks, an additional 102 networks
pass the Jacobian Criterion. (including those with total molecularity at most two).

7.2 Applying the CRN Toolbox to classify reversible two-reaction networks

For the remaining 142 reversible networks that do not pass the Jacobian Criterion,
we applied the CRN Toolbox [10]. This was performed in an automated fashion by
using AutoIt code [1] provided by Dan Siegal-Gaskins. We find that exactly 35 admit
multiple positive mass-action steady states and the remaining 107 do not. For each
of the 35 multistationary CFSTRs, the Toolbox gave an instance of rate constants,
two positive steady state values, and the corresponding eigenvalues. In all cases but
one, the nondegeneracy of these steady states was evident from the eigenvalues. In the
remaining case, in which one steady state was degenerate, we found ‘by hand’ another
instance of multistationarity in which there were two nondegenerate steady states.

For the remaining 107 networks, the CRN Toolbox concluded that they do not admit
multiple positive steady states. A portion of a report produced by the Toolbox for such
a network follows:

Taken with mass action kinetics, the network CANNOT admit multiple
positive steady states or a degenerate positive steady state NO
MATTER WHAT (POSITIVE) VALUES THE RATE CONSTANTS MIGHT HAVE.

The theoretical underpinning of the Toolbox consists of the Deficiency, Advanced
Deficiency, and Higher Deficiency Theories developed by Ellison, Feinberg, Horn,
Jackson, and Ji [9,11,14,15].
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7.3 Classifying irreversible two-reaction networks

Next, we consider the irreversible versions of the reversible two-reaction networks
studied. That is, we are interested in the networks obtained from the 386 reversible
networks by making one or both of the non-flow reactions irreversible (each revers-
ible reaction can be made irreversible in two ways). So, each reversible network has
8 relevant subnetworks. Recall that smaller sub-CFSTRs, those containing only one
directed non-flow reaction or one pair of reversible non-flow reactions, were already
analyzed in Theorem 2.11, and the bimolecular hypothesis ensures that none are
multistationary in the setting here. By Theorem 3.1, only subnetworks of one of the
35 multistationary reversible networks can be multistationary. Therefore, we must
examine only 35 ∗ 8 = 280 such networks. We again applied the Toolbox [10]. We
found that each of the 35 reversible CFSTRs has a unique minimal sub-CFSTR Ni

that admits multiple positive steady states. Of these 35 subnetworks Ni , 29 of them
have two directed non-flow reactions, while the remaining 6 have non-flow reactions
that consist of 1 reversible reaction and 1 directed reaction. Examples of both types
appear in Fig. 2. Thus, a bimolecular two-reaction (possibly irreversible) CFSTR
admits multiple positive steady states if and only if one of these 35 minimal networks
is a subnetwork (part 1 of Corollary 7.2).

Finally, we examined the poset obtained from the Ni with respect to the relation
of ‘embedded networks’ which is displayed in Fig. 3. This poset has 11 minimal ele-
ments, which are the bimolecular two-reaction CFSTR atoms of multistationarity. It
follows that a bimolecular two-reaction (possibly irreversible) CFSTR admits multiple

Fig. 2 Here we display two of the 35 multistationary bimolecular reversible two-reaction CFSTRs (all
inflow and outflow reactions are implied), together with all their respective irreversible multistationary
sub-CFSTRs (subnetworks). The poset relation depicted is the subnetwork relation. At left, the reversible
CFSTR defined by reactions A � A+B � 2A has three multistationary sub-CFSTRs, which are displayed
above. Similarly, the example on the right, defined by 2A � A � 2B, has only one multistationary sub-
CFSTR. More generally, each of the 35 such reversible networks admits a unique minimal multistationary
sub-CFSTR. These minimal subnetworks fall into two classes: 29 of them have the form of the example
displayed on the left (the minimal network has two directed reactions), and the remaining 6 have the form
of the example on the right (the minimal network has one reversible reaction and one directed reaction).
These 35 minimal sub-CFSTRs appear in Fig. 3
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Fig. 3 Here we display the 35 multistationary bimolecular two-reaction CFSTRs that are minimal with
respect to the subnetwork relation. The poset relation depicted here is that of embedded networks: an arrow
points from a network N to a network G if N is an embedded network of G. In addition, each such edge
is labeled by the species that is removed to obtain N from G; for example, C(2) denotes that G contains
two molecules of species C , and these two are removed from G to obtain N . Two networks in the poset
are displayed with the same height if they contain the same number of molecules. The 11 CFSTR atoms of
multistationarity are marked in bold/red; they are the networks that have only outgoing edges in the figure
(at the tops of each component of the poset). All three figures in this work were created in Mathematica

positive steady states if and only if it contains one of these 11 atoms as an embedded
network (part 2 of Corollary 7.2).

We end by noting that prohibitively many bimolecular three-reaction networks
exist, so currently there is no classification of those CFSTR atoms.
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