
BASIC STRUCTURES OF ALGEBRA

WAYNE AITKEN

This document gives the definitions of the most common and important structure
types used in algebra. Few examples are given, and only properties that follow easily
from the definitions are mentioned. It is hoped that this document will serve as a
handy reference for those needing a concise, quick source for such definitions.

The definition of each type of structure is divided into two parts: data and ax-
ioms. The data is a list of objects or information needed to describe the structure,
and the axioms describe what needs to be true for the data to qualify as object of
the given type.

A common, and reasonable, practice in contemporary mathematics is to give the
same name to the structure as a whole and the first, most visible, piece of data
for that structure. For example, if G is a group then we also use G to refer to the
underlying set of the group. This usually does not lead to confusion, and whenever
ambiguity threatens one can add a qualifier, saying, for example, “the group G” in
one context and “the set G” in another.

The processes of demonstrating that an object is an example of a certain type
of structure is a three step process: (i) describe the data, (ii) show that each piece
of data is of the type claimed, and (iii) verify the axioms. Often step (ii) can be
skipped when the data is obviously of the correct type. However, step (ii) can
turn out to be the most difficult. For example, in most presentations of group
theory “closure” is not an axiom for groups, but checking closure is often a critical
part of showing that the given product (or sum) is actually a binary operation.
As another example, step (ii) sometimes involves showing that a description of a
binary operation or other type of function is “well-defined”, in other words, that
the description really does describe a function of the type claimed.

The only formal prerequisite for this document is a bit of set theory. This
document, however, is not an introduction: the reader should have seen several
examples of these structures sometime in the past.

1. Terminology and Notation

All interesting algebraic structures use binary operations:

Definition 1.1. If S is a set, then a map S × S → S is called a binary operation.
If a binary operation S × S → S is signified by a symbol ∗, then the image of
(a, b) ∈ S × S under ∗ is typically written a ∗ b.

Remark 1.2. If S is a set, then a map S → S goes by various names: a unary
operation, a transformation, and, if the map is bijective, a permutation.

Remark 1.3. We often use multiplicative notation for a binary operation S×S → S.
In this case the operation is signified by · and the image of (a, b) ∈ S×S under the
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operation is written a · b or simply ab. The operation is then called a multiplication
operation. The result a · b of the operation is called a product (although the term
product is sometimes used to refer to the operation · itself).

The common alternative is additive notation. In this case, the operation is
signified by + and the image of (a, b) ∈ S × S under the operation is written a + b.
The operation is then called a addition operation. The result a+ b of the operation
is called a sum (although the term sum can refer to the operation + itself).

Remark 1.4. The term map and function are considered synonymous. For maps
f : A → B, the adjective injective and one-to-one are synonymous. The term
one-to-one map and injection are synonymous. For maps f : A → B, the adjec-
tive surjective and onto are synonymous. The term onto map and surjection are
synonymous. A map is said to be bijective if it is both injective and surjective. A
bijective map is called a bijection. Recall, from set theory, that a map has a inverse
if and only if it is a bijection.

Definition 1.5. Let ∗ be a binary operation S×S → S. Then an identity element
e ∈ S for ∗ is an element such that e ∗ a = a ∗ e = a for all a ∈ S.

The following is easily proved.

Proposition 1.6. Let ∗ be a binary operation S × S → S. Then there is at most
one identity element in S for ∗.

2. Groups

The most important structure type in algebra is the group. Groups often arise
from interesting sets of bijections S → S. They also arise from the addition and
multiplication operations in number systems.

Definition 2.1. A group G is described by the following data and axioms:
Data

(1) A set, called the underlying set (denoted here, according to custom, as G).
(2) A binary operation G × G → G called the group operation. (In what

follows, we employ multiplicative notation, although additive notation is
also common).

Axioms

(1) (Associativity) For all a, b, c ∈ G,

a · (b · c) = (a · b) · c.

(2) (Identity) G has an identity element. In other words, there is an identity
element for the binary operation of G (which is unique by a previous result).

(3) (Inverse) For all a ∈ G there is an element b such that ab = ba = e where
e is the identity element of G. Such an element b is called the inverse of a.

The following makes use of all three axioms.

Proposition 2.2 (Cancellation Laws). Let a, b, c ∈ G where G is a group. If
ac = bc then a = b. If ca = cb then a = b.

Corollary 2.3. Let a ∈ G where G is a group. Then a has a unique inverse.
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Definition 2.4. Let a ∈ G where G is a group. Then the inverse of a is typically
denoted as a−1. However, if we are using additive notation, then the inverse is
denoted −a. In this case, we write a− b for a + (−b).

If we are using multiplicative notation, then the identity is typically written 1.
Thus

aa−1 = a−1a = 1.

If we are using additive notation, then the identity is typically written 0. Thus

a + (−a) = a− a = 0 (−a) + a = 0.

The following is an easy consequence of the above.

Proposition 2.5. Let G be a group (written, for convenience, in multiplicative
notation). The following hold for all a, b, c ∈ G:

(1) (One-sided inverses are inverses). If ab = 1 then b = a−1 and a = b−1.
(2) (Double negatives). (a−1)−1 = a.
(3) (Inverse of Products). (ab)−1 = b−1a−1.
(4) (Uniqueness of Solution). Given a, b ∈ G, each of the following has a unique

solution: ax = b and xa = b.
(5) (Inverse of identity). 1−1 = 1.

3. Abelian Groups

Definition 3.1. An abelian group A is a group satifying the following additional
axiom (written here with additive notation):
Axiom: (Commutativity) For all a, b ∈ A,

a + b = b + a.

Note. It is a common convention to use additive notation only for abelian groups. So
one finds additive and multiplicative notation used for abelian groups, but usually
only multiplicative notation for non-abelian groups.

The following is just earlier results translated into additive notation, except
part (4) which uses the commutative property to convert to a standard form.

Proposition 3.2. Let A be an abelian group written in additive notation. The
following hold for all a, b, c ∈ A.

(1) (Cancellation Law). If a + c = b + c then a = b.
(2) (Inverse). If a + b = 0 then b = −a.
(3) (Double Negatives). −(−a) = a.
(4) (Inverse of Sums). −(a + b) = (−a) + (−b).
(5) (Uniqueness of Solution). Given a, b ∈ A, the equation a + x = b has a

unique solution.
(6) (Inverse of identity). −0 = 0.

4. Rings

Most of the familiar number systems, including the integers, the rational num-
bers, the real numbers, and the complex numbers are examples of rings. Matrices
and polynomials give other basic examples.

Definition 4.1. A ring R is described by the following data and axioms:
Data
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(1) (Addition) An abelian group R called the additive group. As suggested by
this terminology, additive notation is used for this group.

(2) (Multiplication) A binary operation R×R → R called multiplication. Mul-
tiplicative notation is typically used for this operation.

Axioms1

(1) (Associativity of Multiplication) For all a, b, c ∈ R,

a(bc) = (ab)c.

(2) (Unity) The multiplication operation has an identity element.2

(3) (Distributivity) For all a, b, c ∈ R

a(b + c) = ab + ac, and (b + c)a = ba + ca.

Note. The identity element for multiplication is often called the unity element of R.
It is unique by an earlier result. The unity element is typically denoted by 1.

The following are easy consequence of the definition.

Proposition 4.2. Let R be a ring. For all a, b ∈ R,

0a = a0 = 0, −(ab) = (−a)b = a(−b), (−1)a = −a (−a)(−b) = ab.

Proposition 4.3. A ring R has exactly one element if and only if 0 = 1.

Note. A ring with exactly one element is called a trivial ring.

5. Commutative Rings

Most of the familiar rings, including the integers, the rational numbers, the real
numbers, the complex numbers, and polynomials rings (usually), are examples of
commutative rings. Matrices and quaternions give examples of interesting rings
which are not commutative.

Definition 5.1. A commutative ring R is a ring satisfying the following additional
axiom:

Axiom: (Commutivity of Multiplication) For all a, b ∈ R,

ab = ba.

6. Integral Domains

Most of the familiar rings, including the integers, the rational numbers, the real
numbers, the complex numbers, and most commonly used polynomials rings, are
examples of integral domains. Such rings are convenient to work with since one can
use familiar cancellation law from traditional algebra.

Definition 6.1. A integral domain R is a commutative ring satisfying the following
addition axioms.

Axioms

(1) For all a, b ∈ R, if ab = 0 then a = 0 or b = 0.
(2) 0 6= 1.

1Of course, the data implicitly includes all the group axioms for +.
2Some authors do not require the unity axiom, but there is not much to be gained by the added

generality. If R satisfies all the axioms except possibly the unity axiom, we will call R a rng.
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Proposition 6.2. Let R be a commutative ring. Then R is an integral domain
if and only if the set of non-zero elements of R is non-empty and closed under
multiplication.

Proposition 6.3. Let R be a commutative ring with 0 6= 1. Then R is an integral
domain if and only if the following cancellation rule holds (for all a, b, c ∈ R):

if ca = cb and c 6= 0 then a = b.

7. Fields

Number systems, including the rational numbers, the real numbers, and the
complex numbers, allow division by any non-zero element. Such number systems
are examples of fields. Not all traditional number systems form a field: the ring of
integers is not a field.

Definition 7.1. Let u be an element of a ring R. If w ∈ R is such that uw = wu = 1
then w is called a multiplicative inverse of u.

Proposition 7.2. Let R be a ring. Any element u ∈ R has at most one multiplica-
tive inverse.

Definition 7.3. Let u be an element of a ring R. The multiplicative inverse of u,
if it exists, is written u−1.

Proposition 7.4. If R is not a trivial ring, then 0 does not have a multiplicative
inverse.

A field is a non-trivial commutative ring that has as many multiplicative inverses
as possible:

Definition 7.5. A field F is a commutive ring satisfying the following:

Axioms

(1) Every non-zero element of F has a multiplicative inverse.
(2) 0 6= 1.

Proposition 7.6. Every field is an integral domain.

So a field can be defined to be an integral domain with the property that every
non-zero element has an inverse.

8. The units group of a ring

A ring with its addition operation is a group. The multiplication operation of
a ring can also be used to form a group, but in this case one has to restrict to a
subset of the ring.

Definition 8.1. Let R be a ring. An unit in R is an element u that has an inverse.
The set of units of R is written R×.

Proposition 8.2. Let R be a ring. Then 1 ∈ R× and 1−1 = 1. If u ∈ R× then
u−1 ∈ R× and (u−1)−1 = u.

Proposition 8.3. Let R be a ring. Then the multiplicative operation R ×R → R
restricts to a binary operation R××R× → R×. In fact, if u, w ∈ R× then (uw)−1 =
w−1u−1.
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Proposition 8.4. Let R be a ring. The set of units R× is a group under multipli-
cation. The identity element is 1.

Definition 8.5. Let R be a ring. The group R× is called the unit group of R.
Obviously if R is a commutative ring, then R× is an abelian group.

The following is an alternate characterization for fields:

Proposition 8.6. Let R be a ring. Then R is a field if and only if (i) R× = R−{0}
and (ii) R× is an abelian group.

9. Modules and Vector Spaces

Definition 9.1. Let R be a ring. An R-module M is described by the following
data and axioms:

Data

(1) (Additive Group) An abelian group M called the additive group. We typi-
cally use additive notation for M .

(2) (Scalar Multiplication) A map R × M → M called scalar multiplication.
Typically a · v and av denote the image of (a, v) under this map.

Axioms

(1) (Associativity) For all a, b ∈ R and v ∈ M ,

a(bv) = (ab)v.

(2) (Unity) For all v ∈ M
1v = v.

(3) (Distributivity 1) For all a, b ∈ R and v ∈ M

(a + b)v = av + bv.

(4) (Distributivity 2) For all a ∈ R and u, v ∈ M

a(u + v) = au + av.

Note. We often use the phrase module over R instead of R-module. If R is under-
stood, then the term module may be used as well.

The following is an easy consequence of the definition. (Here 0 sometimes refers
to an element of R and sometimes an element of M : context should make it clear
what it denoted. Likewise, − has two meanings.)

Proposition 9.2. Let M be an R-module. For all a ∈ R and v ∈ M ,

0v = 0, a0 = 0, −(av) = (−a)v = a(−v), (−1)v = −v.

Remark 9.3. We sometimes use the phrase left R-module for R-modules since el-
ements of R are written to the left of elements of the module. We can define the
notion of a right R-module in a symmetric manner. This distinction is important
if R is a non-commutative ring, but is just a notational distinction if R is a com-
mutative ring (in that case, we can make any right module into a left module by
defining av to be va).

Remark 9.4. If F is a field, then an F -module is usually called a vector space over F
or an F -vector space.


