POLYNOMIALS

LECTURE NOTES: MATH 422, CSUSM, SPRING 2009. PROF. WAYNE AITKEN

1. Polynomial Rings

Let R be a commutative ring. Then $R[x]$ signifies the set of polynomials $a_{n} x^{n}+\ldots+a_{1} x+a_{0}$ with coefficients $a_{i} \in R$. For example, $7 x^{3}-3 x^{2}+11$ is in $\mathbb{Z}[x]$, which is also in $\mathbb{Q}[x]$, in $\mathbb{R}[x]$, and in $\mathbb{C}[x]$ since $\mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$. Observe that $\frac{7}{11} x^{3}-3 x^{2}+11$ is in $\mathbb{Q}[x]$ but not in $\mathbb{Z}[x]$. Observe that $7 x^{3}-\sqrt{2} x^{2}+x-11$ is in $\mathbb{R}[x]$ but not in $\mathbb{Q}[x]$.

If $a_{n} x^{n}+\ldots+a_{1} x+a_{0}$ is a polynomial with coefficients a_{i}, we adopt the convention that $a_{i}=0$ for all values of i not occurring in the expression $a_{n} x^{n}+\ldots+a_{1} x+a_{0}$. For example, when writing $7 x^{3}+x-11$ as $a_{n} x^{n}+\ldots+a_{1} x+a_{0}$, then we consider $a_{2}=0$ and $a_{4}=0$, but $a_{3}=7$ and $a_{0}=11$, etc. Two polynomials $a_{n} x^{n}+\ldots+a_{1} x+a_{0}$ and $b_{k} x^{k}+\ldots+b_{1} x+b_{0}$ are defined to be equal if $a_{i}=b_{i}$ for all $i \geq 0$.

For example, $\overline{6} x^{3}+\overline{2} x^{2}-x+\overline{1}=-x^{2}+\overline{2} x+\overline{1}$ in $\mathbb{F}_{3}[x]$.
Among the polynomials in $R[x]$ are the constant polynomials a_{0}. In other words, $a_{0} \in R$ it can be thought of as both an element of R and as a constant polynomial in $R[x]$. Thus $R \subset R[x]$.

We define multiplication and addition of polynomials in the usual way. (I will skip the details of the definition since these procedures are so familiar). Both operations are closed on $R[x]$. For example, in $\mathbb{Z}_{6}[x]$ the product of $\overline{2} x^{2}+\overline{3} x+\overline{1}$ with $\overline{3} x^{2}+\overline{2}$ can be computed as follows

$$
\left(\overline{2} x^{2}+\overline{3} x+\overline{1}\right)\left(\overline{3} x^{2}+\overline{2}\right)=\overline{6} x^{4}+\overline{4} x^{2}+\overline{9} x^{3}+\overline{6} x+\overline{3} x^{2}+\overline{2}=\overline{3} x^{3}+x^{2}+\overline{2} .
$$

Exercise 1. Multiply $\overline{2} x^{2}+\overline{3} x+\overline{1}$ by $\overline{3} x^{2}+\bar{x}-\overline{2}$ in $\mathbb{F}_{5}[x]$.
Multiplication and addition are defined on $R[x]$ and are closed in the sense that the result is in $R[x]$. So + and \times give two binary operations $R[x] \times R[x] \rightarrow R[x]$. These operations are associative and commutative (we skip the proofs). The distributive law holds between them. The constant polynomials 0 and 1 , given by $0,1 \in R$, are respectively the additive and multiplicative identities. Given a polynomial f, when we multiply each coefficient by -1 we get another polynomial $-f$ such that $f+(-f)=0$. These properties taken together give us the following:
Theorem 1. Let R be a commutative ring. Then the set $R[x]$ is a commutative ring under the usual addition and multiplication.

2. Substitutions

If $f \in R[x]$ then $f(a)$ denotes what we get when we substitute a for x in f. It is defined whenever the substitution makes sense (typically when a is in R, or when a is in a ring containing R). For example, $f(x)$ is just f itself since when we replace x with x we get

Date: Spring 2008. Version of April 5, 2009.
what we started with. So $f(x)$ is another way of writing f. I will typically write f, but will write $f(x)$ whenever I want to remind you that f is a polynomial in x. Another example: if $f=x^{2}+\overline{1}$ in $\mathbb{Z}_{8}[x]$ then $f(\overline{3})=\overline{2}$. Yet another example: if $f=x^{3}$ in $\mathbb{Z}_{12}[x]$ then $f(x+\overline{2})=(x+\overline{2})^{3}=x^{3}+\overline{6} x^{2}+\overline{8}$. (Did you see what happened to the linear term?). If $f \in R[x]$, and y is another variable, then $f(y)$ is in $R[y]$ and has the same coefficients. However, if x and y are different variables, then $f(x)$ is not considered to be equal to $f(y)$ (although if f is a constant polynomial, you can consider them to be equal in the common subring R). If $f=c$ is a constant polynomial, then $f(a)=c$ for all $a \in R$. Observe that if $a \in R$ and $f \in R[x]$ then $f(a) \in R$. Addition and multiplication were defined in such a way to make the following true: $(f+g)(a)=f(a)+g(a)$ and $(f \cdot g)(a)=f(a) \cdot g(a)$ for all $a \in R$. A fancy way of saying this is that substitution is a "homomorphism".

Here is an amusing example. Let $f=x^{3}-x \in \mathbb{Z}_{3}[x]$. Then $f(\overline{0})=\overline{0}, f(\overline{1})=\overline{0}$, and $f(\overline{2})=\overline{0}$. So $f(a)=\overline{0}$ for all $a \in \mathbb{Z}_{3}$ but $f \neq \overline{0}$. So polynomials cannot be treated as functions when R is finite: two distinct polynomials, for example, f and $\overline{0}$ above, can have identical values. This cannot happen for functions.

Definition 1. An element $a \in R$ is called a root of $f \in R[x]$ if $f(a)=0$. The above example is amusing: every element of \mathbb{Z}_{3} is a root of $x^{3}-x \in \mathbb{Z}_{3}[x]$.

Exercise 2. Find the roots of $x^{3}-\overline{1}$ in \mathbb{F}_{7}. Find the roots of $x^{3}-\overline{1}$ in \mathbb{F}_{5}.
Remark. For $R=\mathbb{Z}_{m}$, I will dispense with the practice of writing bars over integers to denote elements. Instead of writing $\overline{3}$, say, I will write 3 to denote the equivalence class of the integer 3 in \mathbb{Z}_{m}. As long as I am clear about the ring of coefficients R, this practice should not result in any confusion.

3. The Quotient-Remainder Theorem for Polynomials

Let F be a field. The ring of polynomials $F[x]$ has a quotient-remainder theorem, a Bezout's identity, a Euclidean algorithm, and a unique factorization theorem. In fact, $F[x]$ and \mathbb{Z} have a surprising number of similarities.

Let's begin with the quotient-remainder theorem. To state this theorem we need to discuss a notion of size for $F[x]$ traditionally called the degree:

Definition 2. Let $f \in R[x]$ where R is a commutative ring. If $f=a_{n} x^{n}+\ldots+a_{1} x+a_{0}$ with $a_{n} \neq 0$ then the degree of f is defined to be n and the leading coefficient is defined to be a_{k}. If $f=0$ then the degree of f is not defined as an integer (some authors define it to be $-\infty$).

Be careful when using this definition modulo m. For example, $6 x^{3}+2 x^{2}-x+1$ in $\mathbb{F}_{3}[x]$ has only degree 2 , and $6 x^{3}+2 x^{2}-x+1$ in $\mathbb{F}_{2}[x]$ has degree 1 . However, $6 x^{3}+2 x^{2}-x+1$ in $\mathbb{F}_{5}[x]$ has degree 3

You would hope that the degree of $f g$ would be the sum of the degrees of f and g individually. However, examples such as $\left(2 x^{2}+3 x+1\right)\left(3 x^{2}+2\right)=3 x^{3}+x^{2}+2$. in $\mathbb{Z}_{6}[x]$ spoil our optimism. However, if the coefficients are in a field F then it works.

Proposition 1. If $f, g \in F[x]$ are non-zero polynomials where F is a field, then

$$
\operatorname{deg}(f g)=\operatorname{deg}_{2} f+\operatorname{deg} g
$$

Exercise 3. Give a proof of the above theorem. Explain why the proof does not work if the coefficients are in \mathbb{Z}_{m} where m is composite.

As mentioned above, the degree of a polynomial is a measure of size. When we divide we want the size of the remainder to be smaller than the size of the quotient. This leads to the following:

Theorem 2 (Quotient-Remainder Theorem for Polynomials). Let $f, g \in F[x]$ be polynomials where F is a field. Assume g is not zero. Then there are unique polynomials $q(x)$ and $r(x)$ such that (i) $f(x)=q(x) g(x)+r(x)$, and (ii) the polynomial $r(x)$ either the zero polynomial or has degree strictly smaller than $g(x)$.

Remark. The polynomial $q(x)$ in the above is called the quotient and the polynomial $r(x)$ is called the remainder.

Remark. This theorem actually holds for polynomials in $R[x]$ where R is a commutative ring that is not a field, as long as we add the extra assumption that the leading coefficient of g is a unit in R.

Remark. We can use this theorem as a basis to prove theorems about GCD's and unique factorization in $F[x]$ just as we did for \mathbb{Z}.

As an important special case, consider $g(x)=x-a$ where $a \in R$. Then $r(x)$ must be zero, or have degree zero. So $r=r(x)$ is a constant: $r \in R$. What is this constant? Well $f(x)=q(x)(x-a)+r$ so when we substitute $x=a$ we get

$$
f(a)=q(a)(a-a)+r=0+r=r .
$$

In other words, $r=f(a)$. This gives the following:
Corollary 1. Let $a \in F$ where F is a field, and let $f \in F[x]$. Then there is a $q \in F[x]$ such that

$$
f(x)=(x-a) q(x)+f(a) .
$$

Remark. This actually works for commutative rings as well as for fields F since the leading coefficient of $g(x)=x-a$ is 1 which is always a unit.

The following is a special case of the above corollary (where $f(a)=0$).
Corollary 2. Let $a \in F$ where F is a field, and let $f \in F[x]$. Then a is a root of f if and only if $(x-a)$ divides f.

4. A Theorem of Lagrange

As you learned long ago, a polynomial f with coefficients in \mathbb{R} (or \mathbb{Q} or \mathbb{C}) has at most $n=\operatorname{deg} f$ roots. This generalizes to all fields.
Theorem 3. Let $f \in F[x]$ be a non-zero polynomial with coefficients in a field F. Then f has at most $n=\operatorname{deg} f$ roots in F.

Proof. This is proved by induction. The induction statement is as follows: if f has degree n then f has at most n roots in F. The case $n=0$ is easy. In this case f is a non-zero constant polynomial which obviously has no roots.

Suppose that the statement is proved for $n=k$. We want to prove it for $n=k+1$. To do so, let f be a polynomial of degree $k+1$. If f has no roots, then the statement is trivially true. Suppose that f does have a root $a \in F$. Then, by Corollary 2 ,

$$
f(x)=q(x)(x-a) .
$$

By Proposition 1, $\operatorname{deg} f=1+\operatorname{deg} q$. In other words, $\operatorname{deg} q=k$. By the inductive hypothesis, q has at most k roots.

We will now show that the only possible root of f that is not a root of q is a (but a could also be a root of q). Suppose that f has a root $b \neq a$. Then $0=f(b)=q(b)(b-a)$. Since $b-a \neq 0$, we can multiply both sides by the inverse: $0(b-a)^{-1}=q(b)(b-a)(b-a)^{-1}$. Thus $0=q(b)$. So every root of f not equal to a must be a root of $q(x)$. Since $q(x)$ has at most k roots, it follows that $f(x)$ must have at most $k+1$ roots.

The following is usually attributed to Lagrange.
Corollary 3 (Lagrange). Let $f \in \mathbb{F}_{p}[x]$ be a non-zero polynomial with coefficients considered modulo p where p is a prime. Then f has at most $\operatorname{deg} f$ roots in \mathbb{F}_{p}.
Proof. It follows from the previous theorem since \mathbb{F}_{p} is a field.
Remark. Observe how this can fail if m is not a prime. The polynomial $x^{2}-1 \in \mathbb{Z}_{8}$ has degree 2 , yet it has four roots! (Can you find them?)

Of course, Lagrange and Gauss would have stated (and proved) Corollary 3 differently since the concept of a field is essentially a twentieth century idea. They might have said something closer to

If p is a prime and $f(x)$ is a polynomial with integer coefficients not all divisible by p, then the congruence $f(x) \equiv 0$ has at most $\operatorname{deg} f$ solutions modulo p.
or
If p is a prime and $f(x)$ is a polynomial with integer coefficients not all divisible by p, then $p \mid f(a)$ for at most $\operatorname{deg} f$ integers a in the range $0 \leq a<p$.
Exercise 4. Show that if $f, g \in F[x]$ are non-zero polynomials where F is a field, then the set of roots of $f g$ is the union of the set of roots of f with the set of roots of g.

Exercise 5. Show that the result of the above exercise does not hold $\mathbb{Z}_{8}[x]$ by looking at $x^{2}-1$.

Exercise 6. Although the result of Exercise 4 does not hold if F is replaced by a general ring (such as \mathbb{Z}_{m} where m is composite), one of the two inclusions does hold. Which one and why?

5. Irreducible Polynomials

One can prove unique factorization into irreducible polynomials for $F[x]$. A polynomial $f \in F[x]$ is said to be irreducible if it is not a constant and if it has no divisors g with $0<\operatorname{deg} g<\operatorname{deg} f$. These polynomials play the role of prime numbers in polynomial rings. One can prove, in a manner similar to that used for primes in \mathbb{Z}, that there is an infinite number of irreducible polynomials in $F[x]$ (even when F is finite).

