
POLYNOMIALS

LECTURE NOTES: MATH 422, CSUSM, SPRING 2009. PROF. WAYNE AITKEN

1. Polynomial Rings

Let R be a commutative ring. Then R[x] signifies the set of polynomials anx
n+. . .+a1x+a0

with coefficients ai ∈ R. For example, 7x3 − 3x2 + 11 is in Z[x], which is also in Q[x], in
R[x], and in C[x] since Z ⊂ Q ⊂ R ⊂ C. Observe that 7

11
x3 − 3x2 + 11 is in Q[x] but not

in Z[x]. Observe that 7x3 −
√

2x2 + x− 11 is in R[x] but not in Q[x].
If anx

n + . . . + a1x + a0 is a polynomial with coefficients ai, we adopt the convention that
ai = 0 for all values of i not occurring in the expression anx

n + . . . + a1x + a0. For example,
when writing 7x3 + x− 11 as anx

n + . . . + a1x + a0, then we consider a2 = 0 and a4 = 0, but
a3 = 7 and a0 = 11, etc. Two polynomials anx

n + . . . + a1x + a0 and bkx
k + . . . + b1x + b0

are defined to be equal if ai = bi for all i ≥ 0.
For example, 6x3 + 2x2 − x + 1 = −x2 + 2x + 1 in F3[x].
Among the polynomials in R[x] are the constant polynomials a0. In other words, a0 ∈ R

it can be thought of as both an element of R and as a constant polynomial in R[x]. Thus
R ⊂ R[x].

We define multiplication and addition of polynomials in the usual way. (I will skip the
details of the definition since these procedures are so familiar). Both operations are closed
on R[x]. For example, in Z6[x] the product of 2x2 + 3x + 1 with 3x2 + 2 can be computed
as follows

(2x2 + 3x + 1)(3x2 + 2) = 6x4 + 4x2 + 9x3 + 6x + 3x2 + 2 = 3x3 + x2 + 2.

Exercise 1. Multiply 2x2 + 3x + 1 by 3x2 + x− 2 in F5[x].

Multiplication and addition are defined on R[x] and are closed in the sense that the result
is in R[x]. So + and × give two binary operations R[x] × R[x] → R[x]. These operations
are associative and commutative (we skip the proofs). The distributive law holds between
them. The constant polynomials 0 and 1, given by 0, 1 ∈ R, are respectively the additive
and multiplicative identities. Given a polynomial f , when we multiply each coefficient by −1
we get another polynomial −f such that f +(−f) = 0. These properties taken together give
us the following:

Theorem 1. Let R be a commutative ring. Then the set R[x] is a commutative ring under
the usual addition and multiplication.

2. Substitutions

If f ∈ R[x] then f(a) denotes what we get when we substitute a for x in f . It is defined
whenever the substitution makes sense (typically when a is in R, or when a is in a ring
containing R). For example, f(x) is just f itself since when we replace x with x we get
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what we started with. So f(x) is another way of writing f . I will typically write f , but will
write f(x) whenever I want to remind you that f is a polynomial in x. Another example:
if f = x2 + 1 in Z8[x] then f(3) = 2. Yet another example: if f = x3 in Z12[x] then
f(x + 2) = (x + 2)3 = x3 + 6x2 + 8. (Did you see what happened to the linear term?).
If f ∈ R[x], and y is another variable, then f(y) is in R[y] and has the same coefficients.
However, if x and y are different variables, then f(x) is not considered to be equal to f(y)
(although if f is a constant polynomial, you can consider them to be equal in the common
subring R). If f = c is a constant polynomial, then f(a) = c for all a ∈ R. Observe that
if a ∈ R and f ∈ R[x] then f(a) ∈ R. Addition and multiplication were defined in such a
way to make the following true: (f + g)(a) = f(a) + g(a) and (f · g)(a) = f(a) · g(a) for all
a ∈ R. A fancy way of saying this is that substitution is a “homomorphism”.

Here is an amusing example. Let f = x3 − x ∈ Z3[x]. Then f(0) = 0, f(1) = 0, and
f(2) = 0. So f(a) = 0 for all a ∈ Z3 but f 6= 0. So polynomials cannot be treated as
functions when R is finite: two distinct polynomials, for example, f and 0 above, can have
identical values. This cannot happen for functions.

Definition 1. An element a ∈ R is called a root of f ∈ R[x] if f(a) = 0. The above example
is amusing: every element of Z3 is a root of x3 − x ∈ Z3[x].

Exercise 2. Find the roots of x3 − 1 in F7. Find the roots of x3 − 1 in F5.

Remark. For R = Zm, I will dispense with the practice of writing bars over integers to
denote elements. Instead of writing 3, say, I will write 3 to denote the equivalence class of
the integer 3 in Zm. As long as I am clear about the ring of coefficients R, this practice
should not result in any confusion.

3. The Quotient-Remainder Theorem for Polynomials

Let F be a field. The ring of polynomials F [x] has a quotient-remainder theorem, a
Bezout’s identity, a Euclidean algorithm, and a unique factorization theorem. In fact, F [x]
and Z have a surprising number of similarities.

Let’s begin with the quotient-remainder theorem. To state this theorem we need to discuss
a notion of size for F [x] traditionally called the degree:

Definition 2. Let f ∈ R[x] where R is a commutative ring. If f = anx
n + . . . + a1x + a0

with an 6= 0 then the degree of f is defined to be n and the leading coefficient is defined to
be ak. If f = 0 then the degree of f is not defined as an integer (some authors define it to
be −∞).

Be careful when using this definition modulo m. For example, 6x3 + 2x2 − x + 1 in F3[x]
has only degree 2, and 6x3 + 2x2 − x + 1 in F2[x] has degree 1. However, 6x3 + 2x2 − x + 1
in F5[x] has degree 3

You would hope that the degree of fg would be the sum of the degrees of f and g
individually. However, examples such as (2x2 + 3x + 1)(3x2 + 2) = 3x3 + x2 + 2. in Z6[x]
spoil our optimism. However, if the coefficients are in a field F then it works.

Proposition 1. If f, g ∈ F [x] are non-zero polynomials where F is a field, then

deg(fg) = deg f + deg g.
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Exercise 3. Give a proof of the above theorem. Explain why the proof does not work if the
coefficients are in Zm where m is composite.

As mentioned above, the degree of a polynomial is a measure of size. When we divide we
want the size of the remainder to be smaller than the size of the quotient. This leads to the
following:

Theorem 2 (Quotient-Remainder Theorem for Polynomials). Let f, g ∈ F [x] be polynomials
where F is a field. Assume g is not zero. Then there are unique polynomials q(x) and r(x)
such that (i) f(x) = q(x)g(x) + r(x), and (ii) the polynomial r(x) either the zero polynomial
or has degree strictly smaller than g(x).

Remark. The polynomial q(x) in the above is called the quotient and the polynomial r(x) is
called the remainder.

Remark. This theorem actually holds for polynomials in R[x] where R is a commutative ring
that is not a field, as long as we add the extra assumption that the leading coefficient of g
is a unit in R.

Remark. We can use this theorem as a basis to prove theorems about GCD’s and unique
factorization in F [x] just as we did for Z.

As an important special case, consider g(x) = x − a where a ∈ R. Then r(x) must be
zero, or have degree zero. So r = r(x) is a constant: r ∈ R. What is this constant? Well
f(x) = q(x)(x− a) + r so when we substitute x = a we get

f(a) = q(a)(a− a) + r = 0 + r = r.

In other words, r = f(a). This gives the following:

Corollary 1. Let a ∈ F where F is a field, and let f ∈ F [x]. Then there is a q ∈ F [x] such
that

f(x) = (x− a)q(x) + f(a).

Remark. This actually works for commutative rings as well as for fields F since the leading
coefficient of g(x) = x− a is 1 which is always a unit.

The following is a special case of the above corollary (where f(a) = 0).

Corollary 2. Let a ∈ F where F is a field, and let f ∈ F [x]. Then a is a root of f if and
only if (x− a) divides f .

4. A Theorem of Lagrange

As you learned long ago, a polynomial f with coefficients in R (or Q or C) has at most
n = deg f roots. This generalizes to all fields.

Theorem 3. Let f ∈ F [x] be a non-zero polynomial with coefficients in a field F . Then f
has at most n = deg f roots in F .

Proof. This is proved by induction. The induction statement is as follows: if f has degree
n then f has at most n roots in F . The case n = 0 is easy. In this case f is a non-zero
constant polynomial which obviously has no roots.
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Suppose that the statement is proved for n = k. We want to prove it for n = k + 1. To do
so, let f be a polynomial of degree k + 1. If f has no roots, then the statement is trivially
true. Suppose that f does have a root a ∈ F . Then, by Corollary 2,

f(x) = q(x)(x− a).

By Proposition 1, deg f = 1+deg q. In other words, deg q = k. By the inductive hypothesis,
q has at most k roots.

We will now show that the only possible root of f that is not a root of q is a (but a could
also be a root of q). Suppose that f has a root b 6= a. Then 0 = f(b) = q(b)(b − a). Since
b−a 6= 0, we can multiply both sides by the inverse: 0(b−a)−1 = q(b)(b−a)(b−a)−1. Thus
0 = q(b). So every root of f not equal to a must be a root of q(x). Since q(x) has at most k
roots, it follows that f(x) must have at most k + 1 roots. �

The following is usually attributed to Lagrange.

Corollary 3 (Lagrange). Let f ∈ Fp[x] be a non-zero polynomial with coefficients considered
modulo p where p is a prime. Then f has at most deg f roots in Fp.

Proof. It follows from the previous theorem since Fp is a field. �

Remark. Observe how this can fail if m is not a prime. The polynomial x2 − 1 ∈ Z8 has
degree 2, yet it has four roots! (Can you find them?)

Of course, Lagrange and Gauss would have stated (and proved) Corollary 3 differently
since the concept of a field is essentially a twentieth century idea. They might have said
something closer to

If p is a prime and f(x) is a polynomial with integer coefficients not all divisible by p, then
the congruence f(x) ≡ 0 has at most deg f solutions modulo p.

or

If p is a prime and f(x) is a polynomial with integer coefficients not all divisible by p, then
p|f(a) for at most deg f integers a in the range 0 ≤ a < p.

Exercise 4. Show that if f, g ∈ F [x] are non-zero polynomials where F is a field, then the
set of roots of fg is the union of the set of roots of f with the set of roots of g.

Exercise 5. Show that the result of the above exercise does not hold Z8[x] by looking at
x2 − 1.

Exercise 6. Although the result of Exercise 4 does not hold if F is replaced by a general
ring (such as Zm where m is composite), one of the two inclusions does hold. Which one
and why?

5. Irreducible Polynomials

One can prove unique factorization into irreducible polynomials for F [x]. A polynomial
f ∈ F [x] is said to be irreducible if it is not a constant and if it has no divisors g with
0 < deg g < deg f . These polynomials play the role of prime numbers in polynomial rings.
One can prove, in a manner similar to that used for primes in Z, that there is an infinite
number of irreducible polynomials in F [x] (even when F is finite).
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