
LINEAR CONGRUENCES AND LINEAR DIOPHANTINE EQUATIONS

MATH 422, CSUSM. SPRING 2009. AITKEN

This document discusses methods and results related to solving linear congruences and
linear Diophantine equations.

1. Linear Congruences: Simple Case

In what follows assume m is a positive integer. Here x is an unknown, and a, c and m
are fixed. In this section we will consider the case where a and m are coprime (the “simple
case”).

Theorem 1. If gcd(a, m) = 1 then the equation

ax ≡ c mod m

has the unique solution x ≡ a−1c modulo m.

Proof. Existence: It is easy to see that x = a−1c does work: substitute and simplify. Recall
that a−1 exists since gcd(a, m) = 1.

Uniqueness: Suppose that x1 is any solution. Then ax1 ≡ c modulo m. Multiply both
sides by a−1 and simplify. Thus x1 ≡ a−1c modulo m. This shows that x1 ≡ x0 mod m. �

Exercise 1. Solve 7x ≡ 11 mod 9 by finding an inverse for 7.

Exercise 2. Solve 3x + 3 ≡ x + 5 mod 11.

Exercise 3. Use the Euclidean algorithm to find the inverse to 297 modulo 349. Use this
to solve 297x ≡ 3 modulo 349.

y

Remark. We only have uniqueness modulo m. There are actually an infinite number of
solutions in Z given by the formula x = a−1c + km where k ∈ Z.

Another method is to use the cancellation law. With this method you do not have to
actually compute a−1, you just need to know it exists. In this method you try to rewrite the
right hand side c as a multiple of a.

Theorem 2. If gcd(a, m) = 1 then the equation

ax ≡ ab mod m

has the same solutions as

x ≡ b mod m

Proof. This is a consequence of the following theorem where d = a. �
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Theorem 3. If gcd(d, m) = 1, and if d divides a and c, then

ax ≡ c mod m

has the same solutions as

(a/d)x ≡ (c/d) mod m.

Proof. Suppose that x0 solves the first congruence. Multiply both sides by d−1 (which exists
since it is prime to m):

d−1ax ≡ d−1c mod m

Rewrite a as d(a/d) and c as c(c/d).

d−1d(a/d)x ≡ d−1d(c/d) mod m.

Now simply. This shows that x0 satisfies the second congruence.
Conversely, suppose that x0 solves the second congruences. Multiple both sides of the

congruence (with x = x0) by d and simplify. This shows that x0 satisfies the first congruence.
�

Remark. Observe that the modulus does not change in this case.

Exercise 4. Solve 6x ≡ 18 mod 31 without finding the inverse of 6. Solve 5x ≡ 4 mod 21
without finding the inverse of 5.

2. Linear Congruences: Nonsimple Case

Now we consider the case where a is not relatively prime to m. Here we must reduce the
modulus. First we consider a result that describes how to reduce the modulus.

Theorem 4. Suppose d divides a, c,m. Then

ax ≡ c mod m

has the same solutions as

(a/d)x ≡ (c/d) mod (m/d).

Proof. Suppose that x0 solves the first congruence.

ax ≡ c mod m.

Then m | (ax0 − c). So ax0 − c = ml for some l ∈ Z. Dividing by d gives us that
(a/d)x0 − (c/d) = (m/d)l. In other words, m/d divides (a/d)x0 − (c/d). Thus x0 solves the
second congruence.

Conversely, if x0 solves the second congruence, then m/d divides (a/d)x0 − (c/d). So
(a/d)x0−(c/d) = (m/d)l for some l ∈ Z. Multiply by d. So ax0−c = ml. Thus m | (ax0−c).
Hence x0 solves the first congruence. �

Just because the two congruences above have the same solutions, does not mean that they
have the same number of solutions relative to their respective moduli. This is described in
the following:
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Theorem 5. Suppose d divides a, c,m. Then every solution of

(a/d)x ≡ (c/d) mod (m/d)

corresponds to d distinct solutions (modulo m) of

ax ≡ c mod m.

In particular, the second congruence has d times the number of solutions as the first congru-
ence.

Proof. Let x0 be a solution to the first equation. We can assume that x0 is chosen so that
0 ≤ x0 < m/d. This is a solution modulo m/d and really corresponds to an infinite number
of solutions x = x0 + k(m/d) where k ∈ Z. Observe that 0 ≤ x0 + k(m/d) < m if and only
if k is in the range 0, 1, . . . , d− 1. Thus x = x0 + k(m/d) describes d distinct solutions. �

Exercise 5. Use the above to find all six solutions to 12x ≡ 24 mod 30.

Now we can prove the main theorem:

Theorem 6. Consider the congruence

ax ≡ c mod m

and let g = gcd(a, m). If g - c then this congruence has no solutions. If g | c then it has
exactly g solutions modulo m.

Remark. Observe that when g = 1 we recover the uniqueness result of the previous section.

Proof. First consider the case where g - c, and suppose a solution x = x0 exists. Then m
divides ax0 − c. Thus ax0 − c = ml for some l ∈ Z. This means c = ax0 − ml. Since g
divides the right hand side, it must divide c, a contradiction.

Now suppose g | c. By Theorem 4 we need to solve

(a/g)x ≡ (c/g) mod (m/g)

By the following lemma, a/g and m/g are relatively prime. Thus there is exactly one solution
modulo m/g. By Theorem 5 there are g·1 solutions to the original congruence modulo m. �

Exercise 6. Use Bezout’s identity to prove the following:

Lemma 7. Let g = gcd(a, b) where b 6= 0. Then a/g and b/g are relatively prime.

Exercise 7. How many solutions does 34x+1 ≡ 18 mod 85 have? How many solutions does
34x + 1 ≡ 20 mod 170 have?

3. Linear Diophantine Equations: two variables

Thus far we have been considering congruences (using ≡). Now we will consider true
equations (using =) where we look only for integer solutions. Such equations are called Dio-
phantine equations in honor of the Greek mathematician Diophantus. Diophantine equations
are much harder than equations where we allow real solutions. Fortunately, the linear case
is not too bad.

Since one variable linear equations are very easy, we start with two variables:

ax + by = c

where we assume a, b, c ∈ Z with a and b nonzero.
3



To solve this, first solve the congruence ax ≡ c mod |b|. If there are any solutions, there
will be an infinite number of them given by the formula x0 + kb/g where g = gcd(a, b).
Now use the equation to solve for y. This method is justified by the following theorem and
corollary.

Theorem 8. Let a, b, c ∈ Z with a and b nonzero. If (x0, y0) is a solution to

ax + by = c

then x0 is a solution to the associated congruence

ax ≡ c mod m

where m = |b|.
Conversely, if x0 is a solution to the above congruence, then there is a y0 such that (x0, y0)

is a solution to the above Diophantine equation.

Proof. For the first claim, observe that b divides (ax0 − c). Thus m divides (ax0 − c).
For the second claim. Since x0 solve the congruence, m | (ax0 − c). Thus ax0 − c is a

multiple of b. Hence ax0 − c = y0b for some y0 ∈ Z. Thus (x0, y0) solves the Diophantine
equation. �

Corollary 9. Let a, b, c ∈ Z with a and b nonzero. Let g = gcd(a, b). Then

ax + by = c

has integer solutions if and only if g | c. If it has a solution (x0, y0) then the general solution
is of the form

x = x0 + (a/g)k, y = y0 − (b/g)k

One consequence of the above corollary is that if you find one solution, one can find the
general solution.

Proof of corollary. By the above theorem, the equation has a solution if and only if the
congruence ax ≡ c mod |b| has a solution. By Theorem 6 this occurs if and only if g | c.

Now suppose that (x0, y0) is a solution (so g | c). The possible values of x are given
by the congruence ax ≡ c mod |b| which can be rewritten as the congruence (a/g)x ≡
(c/g) mod |b|/g. This has a unique solution x0 modulo |b|/g. So the general solution is of
the form x = x0 + k|b|/g where k ∈ Z. We can remove the absolute value sign, and obtain
the same set of possible x.

For any x = x0 + kb/g, the corresponding y is given by solving

a(x0 + kb/g) + by = c.

This yields
y = (c− ax0)/b− k(a/g) = y0 − k(a/g).

�

Exercise 8. Find the general solution of equation 6x + 8y = 100.

Often we want only positive solutions to ax+by = c. In this case, take the general solution

x = x0 + (a/g)k, y = y0 − (b/g)k

and set x ≥ 0 and y ≥ 0. Now solve for k. This will give the range of possible k. Now for
each integer value of k, you get a positive solution.
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Exercise 9. Find the solutions of equation 6x + 8y = 100 such that x and y are natural
numbers.

3.1. Another method. The Euclidean algorithm provides another method for finding a
solution to the equation ax+ by = c. Technically the Euclidean algorithm gives a solution to
ax + by = g where g = gcd(a, b) (by finding a linear combination). However, once a solution
is found giving g a linear combination, a solution yielding c as a linear combination is simply
obtained by multiplying the equation by c/g. Recall that g must divide c for solutions to
exist, so c/g will be an integer in any situation where solutions exist. Once one solution is
found, the general solution is given by the formula of Corollary 9.

Exercise 10. Solve 297x + 349y = 3 using the Euclidean algorithm. Then find the general
solution.

4. Linear Diophantine Equations: Three Variables

Now consider the Diophantine equation

ax + by + cz = d

where a, b, c, d ∈ Z with a, b, c nonzero.
If there is a solution, then any common divisor of a, b, c will also divide d. Thus the

greatest common divisor divides d. We will see that this is also a sufficient condition: the
equation has a solution if and only if the greatest common divisor of a, b, c divides d.

From now on suppose that the greatest common divisor of a, b, c divides d. First we solve
ax + by = g where g is the greatest common divisor of a and b. Suppose (x0, y0) is such a
solution. Next solve gw + cz = d. This has a solution since the greatest common divisor
of g and c divides a, b, c, and by assumption must divide d as well. Let (w0, Z0) be such a
solution. Observe that

d = gw0 + cz0 = (ax0 + by0)w0 + cz0 = a(x0w0) + b(y0w0) + cz0

Thus we get a solution to the original equation.
This discussion establishes the following

Theorem 10. Let a, b, c, d ∈ Z with a, b, c nonzero. The Diophantine equation

ax + by + cz = d

has a solution if and only if d is a multiple of the greatest common divisor of a, b, c.

The above method and theorem extends to four or more variables.

Exercise 11. Find a solution to 6x + 15y + 10z = 2.

5. Additional Problems

Exercise 12. Find the smallest postive rational number that can be written in the form
x/30 + y/36 where x, y are integers.

Exercise 13. Suppose you have a piece of paper with 31 parallel horizontal lines colored
blue dividing the paper into 32 strips of equal height. Assume that there are also 21 parallel
horizontal lines colored red dividing the paper into 22 strips of equal height. Suppose the
piece of paper is 10 inches high. What is the shortest distance between two lines?
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Exercise 14. Find all positive solution to 15x + 7y = 210.

Exercise 15. Find all positive solution to 221x + 91y = 1053.

Exercise 16. Find all integral solution to (6x + 15y)(8x + 7y) = 129.

Exercise 17. A farmer buys 120 head of livestock from $8000. Horses cost 100 dollars, cows
60 dollars, and sheep 30 dollars. The farmer buys at least one of each type. What is the
least number of sheep the farmer could have bought?

Exercise 18. A child has $4.55 in change consisting of dimes and quarters. How many
possibilities are there?
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