
BEZOUT’S IDENTITY, EUCLIDEAN ALGORITHM

NOTES FOR MATH 422, CSUSM. SPRING 2009. PROF. AITKEN

This document assumes the reader is familiar with the basic properties of divisibility. It
also assumes a few basic facts about primes.

1. Bezout’s Identity

Let a and b be integers not both zero. There are eight important facts related to “Bezout’s
Identity”:

1. There is a greatest common divisor of a and b called GCD(a, b).
2. There is a least positive linear combination of a and b.
3. (Bezout’s Identity) These two numbers are the same: call it g.
4. All common divisors of a and b are divisors of g.
5. Conversely, all divisors of g are common divisors of a and b.
6. All linear combinations of a and b are multiples of g.
7. Conversely, all multiples of g are linear combinations of a and b.
8. If d is a common divisor, and e is a linear combination, then d | e.

In this section, we prove these results (but not in this order). Warning: the number g is
of the form ua + vb, but u and v are not unique.

Definition 1. A common divisor of integers a and b is an integer that divides both a and b.

Definition 2. A linear combination of integers a and b is any integer of the form ua + bv
where u, v ∈ Z.

Warning. The term linear combination is used in a different sense than in linear algebra. In
linear algebra, u and v are not restricted to integers. If we want to be more precise, we can
say integral linear combination.

Proposition 3. Let a and b be integers, and let d be a common divisor of a and b. Then
d | ua+vb for all u, v ∈ Z. In other words, if e is a linear combination of a and b, then d | e.

Proof. By hypothesis, a = kd and b = ld for some k, l ∈ Z. Thus ua + vb = (uk + vl)d. So
ua + vb is a multiple of d. �

Exercise 1. Show that every common divisor of a and b also divides a + b and a− b.

Proposition 4. Suppose a, b ∈ Z are not both not zero. Then there is a greatest common
divisor of a and b. It is called the GCD or greatest common divisor of a and b, and is
written GCD(a, b). Furthermore, GCD(a, b) ≥ 1.

Proof. For convenience, suppose a 6= 0. Let S be the set of common divisors. The set S
is (i) non-empty since 1 ∈ S, and (ii) is bounded by |a| by a property of divisibility. Thus
there is a maximum d in S. Since 1 ∈ S and d is the maximum, d ≥ 1. �
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Warning. If a and b are both zero, then all integers are common divisors of a and b, so there
is no greatest.

Exercise 2. Suppose a > 0. Show GCD(a, 0) = a.

Proposition 5. Suppose a, b ∈ Z are not both zero. Then there is a least positive linear
combination of a and b.

Proof. For convenience, suppose a 6= 0. Let S be the set of positive linear combinations.
Clearly |a| ∈ S, so S is non-empty. By the well-ordered principle, the set S has a minimum.

�

Warning. If a and b are both zero, then the only linear combination is 0. Thus there is no
minimum positive linear combination.

Lemma 6. If a and b are not both zero, then the least positive linear combination is a
common divisor of a and b.

Proof. Let m = ua + vb be the least positive linear combination. Using the quotient-
remainder theorem we can write a = qm + r where 0 ≤ r < m. Observe that

r = a− qm = a− q(ua + vb) = (1− qu)a + (−qv)b.

Thus r is a non-negative linear combination as well. But m is the smallest positive linear
combination. Thus r cannot be positive. Hence, r = 0. Therefore, m | a.

The proof that m | b is similar. �

We are now ready for the main theorem of the section.

Theorem 7 (Bezout’s Identity). If a and b are not both zero, then the least positive linear
combination of a and b is equal to their greatest common divisor.

Proof. Let m be the least positive linear combination, and let g be the GCD. Then g | m by
Proposition 3. In particular, g ≤ m. By Lemma 6, m is a common divisor, so g < m cannot
hold. Thus g = m. �

Corollary 8. If a and b are not both zero, then every common divisor of a and b divides
GCD(a, b).

Proof. Let d be a common divisor. By the above theorem, GCD(a, b) is a linear combination
of a and b, so d | GCD(a, b) by Proposition 3. �

Exercise 3. Show the converse: if d is a divisor of GCD(a, b), then it is a common divisor of
a and b.

Proposition 9. If a and b are not both zero, then every multiple of GCD(a, b) is a linear
combination of a and b.

Proof. Let g = GCD(a, b). By Theorem 7, we can find u, v ∈ Z such that g = ua + vb. Let
kg be a multiple of g. Then kg = (ku)a + (kv)b. �

Exercise 4. Show the converse: every linear combination of a and b is a multiple of their
GCD.

Definition 10. Two integers a and b are said to be relatively prime if they are not both
zero and they have GCD equal to 1.
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Exercise 5. Let a, b ∈ Z be fixed integers. Show that the equation ax+ by = 1 has a solution
with x, y ∈ Z if and only if a and b are relatively prime.

Here is a nice application of the above.

Theorem 11. Suppose that a, b, c ∈ Z are such that c | ab. If a and c are relatively prime,
then c | b.

Proof. Since a and c are relatively prime there are u, v ∈ Z such that ua + vc = 1. Thus
uab + vcb = b. Since c divides the left-hand side, it must divide the right-hand side. �

Exercise 6. Show that if d is odd and d divides 2k then d divides k.

Exercise 7. Show that every odd common divisor of a + b and a− b also divides a and b.

2. Euclidean Algorithm

We will now discuss a method of computing GCDs. This method can be found in Euclid’s
Elements. It is one of the most efficient method of finding GCDs for large integers. This
method also allows us to find u and v such that ua + vb is the GCD of a and b.

Here is one step of the algorithm.
input: Two integers (a, b) where a ≥ b > 0.
output: The pair (b, r) where r is the remainder when we write a = bq+r with 0 ≤ r < b.

In the Euclidean algorithm, one simply repeats the above step. The output of the previous
step becomes the input of the next step. This continues until a pair (n, 0) is produced. Then
n will be the GCD of a and b. We now give a series of lemmas showing that this procedure
works.

Lemma 12. The input pair and the output pair of a step of the Euclidean algorithm have
the same GCD.

Proof. Let S1 be the set of common divisors of the input (a, b), and let S2 be the set of
common divisors of the output (b, r). Recall that a = bq + r, so r = a− bq.

Let d ∈ S1. Then d | a and d | b. Also d | r since r = 1 · a + (−q)b is a linear combination.
Thus d | r and d | b. So d ∈ S2.

Let d ∈ S2. Then d | r and d | b. But a = qb + 1 · r is a linear combination. Thus d | a as
well. Thus d ∈ S1.

We now see that S1 = S2. The maximums of these sets must be the same, so the GCDs
agree. �

Proposition 13. The initial input (a, b) and the final output (n, 0) have the same GCD.
Thus the GCD of a and b is n.

Proof. By the previous lemma, the GCD does not change as we replace each input by the
corresponding output. Thus the GCD will remain constant throughout the process. The
final output will have the same GCD as the initial input. By an earlier exercise, (n, 0) has
GCD equal to n. �

Proposition 14. The Euclidean algorithm is guaranteed to terminate. In other words, a
pair of the form (n, 0) will eventually be produced.
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Proof. Fix a and b. Let S be the set of all second coordinates that appear as outputs as
we perform the Euclidean algorithm starting with (a, b). For instance r ∈ S, where r is the
remainder of dividing a by b. By the well-ordering principle the set S has a minimum m.
Since m ∈ S, there is an n such that (n, m) occurs as the output of some step. If m 6= 0 then
we must perform a step where (n, m) is the input. The new output will be (m, r) where r
the remainder. Since r < m and r ∈ S, we get a contradiction. We conclude that m = 0.
So (n, 0) is the output. �

Now we know that the Euclidean algorithm can be used to compute the GCD of the initial
pair. By keeping track of the quotients at each step there is a method of writing the GCD
as a linear combination of the initial pair. This follows from the following analysis:

Let (a, b) be a pair of integers that occurs as the input of a step in the Euclidean algorithm.
Suppose the output is (b, r). Finally, suppose that we have a linear combination

k = ub + vr.

Then k is also a linear combination of (a, b). In fact,

k = ub + vr = ub + (a− bq)r = va + (u− qr)b.

Recall that eventually we get an output (n, 0) where n is the GCD. Then n = u · n + v · 0
where u = 1 and v = 0 (but you can use any other value of v if you wish). The above formula
shows a way to form n as a linear combination of the prior pair. By tracing back through
all the steps, we reach a linear combination of the initial input that equals n.

Exercise 8. The above discussion is very general and a bit abstract. Illustrate the above
discussion with a few examples.

Remark. You can apply the Euclidean algorithm to positive real numbers as well, but it is
not guaranteed to stop. In fact, if the initial pair is (a, 1) then it stops if and only if a is
rational (and the result will be 1/d where d is the denominator of a). In general, it stops
if and only if (a, b) are commensurable. On the other hand, comparing the diagonal a of a
square (or pentagon) to the side b, there is a geometric argument that the algorithm keeps
going forever. This is likely a way in which the Greeks discovered incommensurables.

The Euclidean algorithm for real numbers is related to the theory of continued fractions,
which is a rich and fascinating area of number theory.

3. Prime Divisors

Theorem 15. If n > 1 is composite, then n has a prime divisor p such that p2 ≤ n.

Remark. Another way to say this is that a composite integer n > 1 has a prime divisor p
with p ≤

√
n. So if an integers n > 1 is not divisible by any prime p ≤

√
n, we can conclude

that n must be a prime. This idea can be used with the Sieve of Eratosthenes to come up
with a list of primes less than N as long as N is not too big. (See class notes).

Proof. If n is composite, then n = ab where a > 1 and b > 1. For convenience, suppose
a ≤ b. Let p be a prime divisor of a. Thus p ≤ a ≤ b. So

p2 ≤ a2 ≤ ab = n.

Since p | a and a | n we have p | n. �
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