
IBC GEOMETRY

MATH 410, CSUSM. SPRING 2008. PROFESSOR AITKEN

This document develops the part of geometry that can be build on the axioms of inci-
dence (I), betweenness (B), and congruence (C). We call this geometry IBC Geometry.

The axioms of IBC Geometry are a subset of Hilbert’s axioms for Euclidean (and Hyper-
bolic) geometry. IBC Geometry does not include axioms for completeness or parallelism, but
it includes everything else. I have made a few minor changes in Hilbert’s original axioms,
but the resulting geometry is equivalent.

This document builds on an earlier document about Incidence-Betweenness Geometry,
and I assume that the reader is familiar with that document. In this edition, there are no
drawings to illustrate the axioms, definitions, propositions, and proofs. I strongly recommend
that you supply your own diagrams. The very act of producing the drawings will help
your understanding. The only caveat is that in Hilbert style geometry, unlike Euclid style
geometry, our proofs should not require facts that are obvious from the drawings; there
should be no need to appeal to visual or geometric intuition.

1. The Axioms of IBC Geometry

IBC Geometry, as developed here, consists of 5 primitive terms, 14 axioms, and anything
that can be defined or proved from these.

Primitive Terms. The five primitive terms are point, line, betweenness, segment congru-
ence, and angle congruence. All additional terms must be defined using primitive terms,
previously defined terms, and basic set theory. We adopt all the notation and definitions
from Incidence-Between Geometry including terms such as line segment or angle.

Axiom (Primitive Terms). The basic type of object is the point. Lines are sets of points.
Betweenness is a three place relation of points. If P,Q,R are points, then P ∗Q ∗R denotes
the statement that the betweenness relation holds for (P,Q,R). Segment congruence is a
two place relation of line segments, and angle congruence is a two place relation of angles.
If AB and CD are line segments, then AB ∼= CD denotes the statement that the segment
congruence relation holds between AB and CD. If α and β are angles, then α ∼= β denotes
the statement that the angle congruence relation holds between α and β.

Congruence between line segments and congruence between angles are primitive (unde-
fined) relations. However, congruence between triangles is defined (as we will see below).

The axioms of IBC Geometry include the above axiom, I-1, I-2, I-3, B-1, B-2, B-3, B-4, and
6 new congruence axioms C-1, C-2, C-3, C-4, C-5, C-6. See the Betweenness-Incidence Geom-
etry Handout for a statement of I-1 to I-3, and B-1 to B-4. Since the axioms of Betweenness-
Incidence Geometry are a subset of the axioms of IBC Geometry, all the propositions of the
previous document on Betweenness-Incidence Geometry are automatically propositions of
IBC Geometry, and we will make heavy use of such propositions in what follows.
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Euclid’s first common notion (“things which are equal to the same thing are also equal to
each other”), is the inspiration for the transitive law for congruences. In fact, congruence
should be reflexive and symmetric as well as transitive. This leads us to the first congruence
axiom.

Axiom (C-1). Segment congruence is an equivalence relation for line segments.

The next axiom concerns copying a given line segment onto a ray. It is inspired by Euclid’s
second postulate and his Proposition 3 (in Book I of the Elements).

Axiom (C-2). Suppose that AB is a line segment and
−−→
CD is a ray. Then there is a unique

point E on
−−→
CD, distinct from C, such that AB ∼= CE.

The next axiom concerns copying dividing or intermediate points on a segment.

Axiom (C-3). Suppose that AC and A′C ′ are congruent line segments. If B is a point such
that A ∗B ∗C, then there is a point B′ such that A′ ∗B′ ∗C ′, AB ∼= A′B′, and BC ∼= B′C ′.

The next three axioms concern congruence of angles. The first of the three is similar to C-1
and is also inspired by Euclid’s common notions. (Euclid’s common notions were “common”.
They were supposed to apply to all types of “magnitudes” including segments/lengths and
angles, but also numbers (integers) and volumes. The modern approach is not to assume
that all magnitudes will automatically have the same properties, but instead to prove that
they share properties.)

Axiom (C-4). Angle congruence is an equivalence relation for angles.

The following axiom concerns copying a given angles onto a ray. It corresponds to Euclid’s
Proposition I-23.

Axiom (C-5). Suppose ∠BAC is an angle, and
−−→
DE is a ray. Then on any given side of

←→
DE,

there is a unique ray
−−→
DF such that ∠BAC ∼= ∠EDF .

The final congruence axiom concerns copying of triangles. Before we give this axiom, we
need a few definitions concerning triangles.

Definition 1. Given a triangle 4ABC, we sometimes denote ∠BAC as just ∠A. We define
∠B and ∠C similarly.

Definition 2. Two triangles 4ABC and 4A′B′C ′ are said to be congruent if (and only
if1) (i) AB ∼= A′B′, (ii) BC ∼= B′C ′, (iii) CA ∼= C ′A′, (iv) ∠A ∼= ∠A′, (v) ∠B ∼= ∠B′, and
(vi) ∠C ∼= ∠C ′.2

Even though congruence is a primitive term for line segments and angles, the above shows
that it is a defined term for triangles.

In a few propositions (SAS I-5 and SSS I-8), Euclid assumes that triangles can be moved or
copied. He did so without an explicit postulate. This idea is the inspiration for the following
axiom which asserts that we can copy a given triangle onto a congruent base.

1Recall the convention that an if statement used to define a new term is really an if and only if statement.
2Technically, congruence is not a property of triangles themselves, but of triangles with a given ordering

of their vertices. Triangles that are congruent under one ordering, might not be under other orderings.
Triangles are obviously congruent to themselves when we use the same ordering. As we will see in the proof
of Theorem 4, for isosceles triangles we have a triangle congruent to itself under a different order.
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Axiom (C-6). Suppose 4ABC is a triangle, and A′B′ is a segment such that AB ∼= A′B′.

Then on any given side of
←−→
A′B′, there is a point C ′ such that 4ABC ∼= 4A′B′C ′.

Remark. In Axiom C-6, I have chosen to depart from Hilbert’s system. Hilbert choose SAS
as the final congruence axiom. Inspired by Euclid, I decided to make SAS into a proposition
with a proof inspired by that of Euclid’s Proposition I-4. In order to make Euclid’s proof
valid according to our modern style of geometry, I had to add the above axiom concerning
the copying of triangles.3

Axiom C-3 and C-6 do not assert uniqueness. This is because uniqueness can be proved.

Proposition 1. The point B′ in Axiom C-3 is unique.

Proof. The point B′ is on the ray
−−→
A′C ′ and AB ∼= A′B′. By the uniqueness assertion of

Axiom C-2, there can be no other such point. �

Proposition 2. The point C ′ in Axiom C-6 is unique.

Proof. Suppose C ′′ is another such point. By definition of triangle congruence, ∠BAC ∼=
∠B′A′C ′ and ∠BAC ∼= ∠B′A′C ′′. By uniqueness in Axiom C-5,

−−→
A′C ′ =

−−−→
A′C ′′. Also by

definition of triangle congruence, AC ∼= A′C ′ and AC ∼= A′C ′′. By the uniqueness assertion
of axiom C-2, C ′ = C ′′. �

The following is essentially Proposition I-4 in the Elements.

Proposition 3 (SAS). Suppose4ABC and4A′B′C ′ are triangles such that (i) AB ∼= A′B′,
(ii) AC ∼= A′C ′, and (iii) ∠A ∼= ∠A′. Then 4ABC ∼= 4A′B′C ′.

Proof. By Axiom C-6 there is a point D such that 4ABC ∼= 4A′B′D. Furthermore, by

Axiom C-6, this point can be chosen so that D and C ′ are on the same side of
←−→
A′B′.

By assumption ∠BAC ∼= ∠B′A′C ′, and by definition of triangle congruence ∠BAC ∼=
∠B′A′D. By uniqueness in Axiom C-5,

−−→
A′C ′ =

−−→
A′D. By assumption AC ∼= A′C ′, and by

definition of triangle congruence, AC ∼= A′D. By uniqueness in Axiom C-2, C ′ = D.
Since C ′ = D and 4ABC ∼= 4A′B′D, we conclude that 4ABC ∼= 4A′B′C ′. �

As an application of SAS we prove the following famous theorem of geometry (Euclid’s
Prop. I-5, but with a much simpler proof due to the later Greek geometer Pappus).

Theorem 4 (Isosceles Base Angles). If 4ABC is such that AB ∼= AC, then ∠B ∼= ∠C.

Proof. By assumption (i) AB ∼= AC. By Axiom C-1(symmetric) (ii) AC ∼= AB. By Ax-
iom C-4(reflexive) (iii) ∠BAC ∼= ∠CAB. Thus 4ABC ∼= 4ACB by Proposition 3. In
particular, ∠B ∼= ∠C (definition of triangle congruence). �

Definition 3. An isosceles triangle is one that has two sides that are congruent. The above
shows that two of the angles must also be congruent. An equilateral triangle is one that has
all three sides congruent.

From the above theorem we get the following.

3This is not my only departure from Hilbert. Many authors, myself included, have introduced various
small modifications to Hilbert system. For example, Hilbert’s version of C-3 is essentially Proposition 7
below. Ultimately, however, the geometry developed by these various modifications is essentially the same.
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Corollary 5. An equilateral triangle has all three angles congruent.

Exercise 1. Prove the above.

Remark. We have not proved yet that isosceles and equilateral triangles exist. The above
results tell us something about them if they do happen to exist. We cannot hope to prove
the existence of equilateral triangles until later after we have established that certain circles
intersect (as in Euclid’s Prop. I-1). The intersection of circles requires an axiom beyond that
of IBC geometry. The required axiom will be described in a future handout.

The term “congruence” is usually used only for equivalence relations. We have three
types of congruences: segment, angle, and triangle. The first two are equivalence relations
by assumption (Axioms C-1 and C-4). The last can be proved to be an equivalence relation.

Proposition 6. Congruence ∼= is an equivalence relation among triangles (or more precisely,
among triangles with a chosen ordering of the vertices).

Exercise 2. Prove the above Proposition.

2. Basic Properties of Segments

Euclid’s Common Notion 2 states that “if equals are added to equals, then the wholes are
equal”. The following proves that this is indeed the case for line segments.

Proposition 7 (Segment Addition). Suppose that A ∗B ∗C and A′ ∗B′ ∗C ′. If AB ∼= A′B′

and BC ∼= B′C ′ then AC ∼= A′C ′.

Proof. By Axiom C-2 there is a point E on
−→
AC such that A′C ′ ∼= AE. By the symmetry

law of Axiom C-1, we have AE ∼= A′C ′. If we can show that E = C, the result follows.
Since A′ ∗B′ ∗C ′, Axiom C-3 gives us a point F on AE that matches B′. In other words,

A ∗ F ∗ E, A′B′ ∼= AF and B′C ′ ∼= FE. By a result of incidence-betweenness geometry,−→
AC =

−→
AE. Observe that this ray contains points B and F . Also A′B′ ∼= AF , and A′B′ ∼= AB

(by assumption and Axiom C-1). Thus B = F by the uniqueness assertion of Axiom C-2.
Since B = F , we have A ∗ B ∗ E, and B′C ′ ∼= BE. By results of incidence-betweenness

geometry,
−−→
BE =

−−→
BC.4 This ray contains points E and C, B′C ′ ∼= BE, and B′C ′ ∼= BC (by

assumption and Axiom C-1). Thus E = C by the uniqueness assertion of Axiom C-2. Thus
AC ∼= A′C ′. �

Remark. The above proof mentioned Axiom C-1 every time it was used. This practice has
the effect of lengthening proofs without really adding new insight. From now on we will
mostly use Axioms C-1 and C-4 without explicit mention. In other words, we will use the
reflexive, symmetric, and transitive properties for ∼= as freely as we do for =.

Now we prove segment subtraction which is inspired by Euclid’s Common Notion 3 (“if
equals are subtracted from equals, then the remainders are equal”).

Proposition 8 (Segment Subtraction). Suppose that A∗B∗C and A′∗B′∗C ′. If AC ∼= A′C ′

and AB ∼= A′B′ then BC ∼= B′C ′.

4One way to see this is to use three and four point betweenness; there are three possible cases for A, B, C,E.
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Proof. By Axiom C-3, there is a point X such that A′ ∗X ∗C ′, AB ∼= A′X, and BC ∼= XC ′.

Observe that B′, X ∈
−−→
A′C ′. By the uniqueness assertion in Axiom C-2, X = B′. Since

BC ∼= XC ′, the result follows. �

We end this section by defining an order < among segments, and proving standard prop-
erties including transitivity and trichotomy. These were used as common notions by Euclid,
although mostly not explicitly stated in his section called Common Notions.

Definition 4 (< for Segments). Let AB and CD be segments. We say that AB < CD (or
CD > AB) if there is a point E such that C ∗ E ∗D and AB ∼= CE.

Proposition 9 (Substitution). If AB < CD and CD ∼= C ′D′ then AB < C ′D′. Likewise,
if AB < CD and AB ∼= A′B′ then A′B′ < CD.

Proof. Suppose that AB < CD and CD ∼= C ′D′. By Definition 4, there is a point E such
that C ∗E ∗D and AB ∼= CE. By Axiom C-3, there is a point E ′ such that C ′ ∗E ′ ∗D′ and
CE ∼= C ′E ′. So AB ∼= C ′E ′. Hence AB < C ′D′ (Definition 4).

Suppose that AB < CD and AB ∼= A′B′. By Definition 4, there is a point E such that
C ∗ E ∗D and AB ∼= CE. So A′B′ ∼= CE. Thus A′B′ < CD (Definition 4). �

Euclid’s Common Notion 5 states that ‘the whole is greater than its parts.’ The following
shows that this is true for segments with our definition of <.

Proposition 10. If A ∗B ∗ C then AB < AC.

Proof. This follows directly from Definition 4 together with the fact that AB ∼= AB. �

An important property of < is transitivity:

Proposition 11 (Transitivity). If AB < CD and CD < EF then AB < EF .

Proof. By definition of <, there is a point G such that C ∗G ∗D and AB ∼= CG. Likewise,
there is a point H such that E ∗H ∗ F and CD ∼= EH. By Axiom C-3, there is a point G′

such that E ∗G′ ∗H and EG′ ∼= CG. So E-G′-H-F . In particular E ∗G′ ∗ F . Observe that
AB ∼= EG′ (since EG′ ∼= CG and AB ∼= CG). Thus AB < EF . �

We conclude this section with the Trichotomy property for segments. The proof of this
property requires the following lemma.

Lemma 12. If AB is a line segment, then AB < AB does not hold.

Proof. Suppose AB < AB. By definition of <, there is a point C such that A ∗ C ∗ B
and AB ∼= AC. Observe that C and B are both on the ray

−→
AB, and that AB ∼= AC. By

uniqueness in Axiom C-2, we have B = C. This contradicts A ∗ C ∗B and Axiom B-1. �

Proposition 13 (Trichotomy). Given segments AB and CD then exactly one of the follow-
ing occurs: (i) AB < CD, (ii) AB ∼= CD, (iii) CD < AB.

Proof. By Axiom C-2 there is a unique point E on
−−→
CD such that AB ∼= CE. Since E

is on
−−→
CD we have either (a) C ∗ E ∗ D, (b) E = D, or (c) C ∗ D ∗ E. In the first case

AB < CD by definition of <. In the second case AB ∼= CD. In the third case CD < CE
by Proposition 10. But CE ∼= AB, so CD < AB (Proposition 9).
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We have shown at least one of (i), (ii), (iii) occur, now we must show at most one occurs.
Suppose (i) and (iii) hold. Then AB < AB by transitivity. Suppose (i) and (ii) hold. Then
AB < AB by Proposition 9. Suppose (ii) and (iii) hold. Then AB < AB by Proposition 9.
In any case AB < AB holds, contradicting Lemma 12. �

3. Basic Properties of Angles

Recall how supplementary angle was defined (in the Inclusion-Betweenness Geometry

handout): if B ∗ A ∗ C, and if D is a point not on
←→
BC, then ∠BAD and ∠DAC are

called supplementary angles.
The following is a basic result about supplementary angles. Its proof is an amusing

argument using SAS three times.

Proposition 14. Suppose α and β are supplementary angles, and that α′ and β′ are also
supplementary angles. If α ∼= α′ then β ∼= β′.

Proof. Write α = ∠BAD and β = ∠DAC where B ∗ A ∗ C. Likewise write α′ = ∠B′A′D′

and β′ = ∠D′A′C ′ where B′ ∗ A′ ∗ C ′. Let X be the point on
−−→
A′B′ such that A′X ∼= AB

(Axiom C-2). Replace B′ with X, so now A′B′ ∼= AB. Likewise, we can assume that
A′C ′ ∼= AC, and that A′D′ ∼= AD.

By SAS (Prop. 3), 4BAD ∼= 4B′A′D′. Thus BD ∼= B′D′ and ∠B ∼= ∠B′.
By Segment Addition (Prop. 7), BC ∼= B′C ′. So, by SAS, 4DBC ∼= 4D′B′C ′. This

implies that ∠C ∼= ∠C ′ and CD ∼= C ′D′. Since AC ∼= A′C ′, we can use SAS a third time to
get that 4ACD ∼= 4A′C ′D′. This implies that β ∼= β′. �

Definition 5 (Vertical Angles). Suppose l and m are two lines intersecting at a point A.
Suppose B and D are on m, and C and E are on l such that B ∗A ∗D and C ∗A ∗E. Then
∠BAC and ∠DAE are called vertical angles.

Remark. The angles ∠BAC and ∠DAE in the above are both supplementary to the same
angle, namely ∠BAE.

Remark. The definition of vertical angle doesn’t use the concept of congruence. It could
have been given in Incidence-Betweenness Geometry, but wasn’t needed there.

The following is Proposition I-15 of the Elements. The proof is similar, but with important
differences. For instance, we do not need to use angle addition or subtraction in any way.

Proposition 15 (Vertical Angles). Vertical angles are congruent.

Exercise 3. Prove the above theorem appealing to Proposition 14.

Remark. In the following proposition, and in many other parts of this handout, it is important
that you make diagrams. Of course, you cannot use the diagram to justify any steps of the
proof, but it does help you understand what is going on.

The following proposition is related to Euclid’s Proposition I-14.

Proposition 16. Let
←→
AD be a line, and let B and C be on opposite sides of

←→
AD. Suppose

α and β are supplementary angles such that α ∼= ∠BAD and β ∼= ∠DAC. Then B,A,C
are collinear. Thus ∠BAD and ∠DAC are also supplementary.
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Proof. Let E be a point such that B ∗A ∗E (Axiom B-2). So B and E are on opposite side

of
←→
AD. By assumption B and C are on opposite sides of

←→
AD. Thus C and E are on the

same side of
←→
AD.

Observe that ∠BAD and ∠DAE are supplementary. Since ∠BAD ∼= α it follows that
∠DAE ∼= β by Proposition 14. By assumption ∠DAC ∼= β. So by Axiom C-5, we have−→
AC =

−→
AE. Thus C is on

←→
AE =

←→
AB. Hence A,B,C are collinear.

Since C and B are on opposite sides of
←→
AD, there is a point X ∈

←→
AD such that B ∗X ∗C

(definition of opposite sides). But B,C,A are collinear, and
←→
AD and

←→
BC intersect in at most

one point. Thus X = A. This implies ∠BAD and ∠DAC are also supplementary (definition
of supplementary). �

Recall that Proposition 7 (Angle Addition) shows that segments satisfy Common Notion 2
in Book I of the Elements (‘if equals are added to equals, then the wholes are equal’). The
following shows that angles also satisfy this property.

Proposition 17 (Angle Addition). Suppose that D is interior to ∠BAC, and that D′ is
interior to ∠B′A′C ′. If ∠BAD ∼= ∠B′A′D′ and ∠DAC ∼= ∠D′A′C ′ then ∠BAC ∼= ∠B′A′C ′.

Proof. By the Crossbar Theorem, there is a point E on the ray
−−→
AD such that B ∗E ∗C. In

particular B and C are on opposite sides of
←→
AD. Likewise, B′ and C ′ are on opposite sides

of
←−→
A′D′.
By Axiom C-2 there is a point X on

−−→
A′B′ so that A′X ∼= AB. By replacing B′ with X, we

can assume A′B′ ∼= AB. Likewise, replacing if necessary, we can assume that A′C ′ ∼= AC.

By Axiom C-2 again there is a point E ′ be on
−−→
A′D′ such that A′E ′ ∼= AE. Note that even

though B,E,C are collinear, we have not yet established that B′, E ′, C ′ are collinear.
By SAS, 4BAE ∼= 4B′A′E ′ and 4EAC ∼= 4E ′A′C ′. In particular ∠BEA ∼= ∠B′E ′A′

and ∠AEC ∼= ∠A′E ′C ′. But ∠BEA and ∠AEC are supplementary. By Proposition 16,
we get that B′, E ′, C ′ are collinear. So B′ ∗ E ′ ∗ C ′ (since B′ and C ′ are on opposite sides

of
←−→
A′D′). Since4BAE ∼= 4B′A′E ′ and4EAC ∼= 4E ′A′C ′, we get that ∠ABE ∼= ∠A′B′E ′

and BE ∼= B′E ′ and EC ∼= E ′C ′. By Segment Addition (Prop. 7), BC ∼= B′C ′. Since
AB ∼= A′B′, we use SAS to conclude that 4ABC ∼= 4A′B′C ′. So ∠BAC ∼= ∠B′A′C ′. �

Next, we give the following which is the angle version of Axiom C-3.

Proposition 18. Suppose that ∠BAC ∼= ∠B′A′C ′, and suppose that
−−→
AD is a ray such

that
−→
AB − −

−−→
AD − −

−→
AC. Then there is a ray

−−→
A′D′ such that

−−→
A′B′ − −

−−→
A′D′ − −

−−→
A′C ′,

∠BAD ∼= ∠B′A′D′ and ∠DAC ∼= ∠D′A′C ′.

Proof. Let B′′ be a point on
−−→
A′B′ such that AB ∼= A′B′′ (Axiom C-2). Likewise, let C ′′

be a point on
−−→
A′C ′ such that AC ∼= A′C ′′ (Axiom C-2). By SAS (Theorem 3), 4ABC ∼=

4A′B′′C ′′. Thus BC ∼= B′′C ′, ∠B ∼= ∠B′′, and ∠C ∼= ∠C ′′.

By the Crossbar Theorem there is a point E on
−−→
AD such that B ∗ E ∗ C. By Axiom C-

3, there is a point E ′ such that B′′ ∗ E ′ ∗ C ′′, BE ∼= B′′E ′, and EC ∼= E ′C ′′. By the
Crossbar-Betweenness Proposition, E ′ is in the interior of ∠B′′A′C ′′ = ∠B′A′C ′. Since
AB ∼= A′B′′ and ∠B ∼= ∠B′′ and BE ∼= B′′E ′, we have 4ABE ∼= 4A′B′′E ′ (SAS). Thus
∠BAE ∼= ∠B′′A′E ′. In other words, ∠BAD ∼= ∠B′A′E ′. Likewise, ∠DAC ∼= ∠E ′A′C ′.
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Let D′ = E ′. Since D′ is in the interior of ∠B′A′C ′ we have
−−→
A′B′−−

−−→
A′D′−−

−−→
A′C ′. Also,

with this choice of D’, we have ∠BAD ∼= ∠B′A′D′ and ∠DAC ∼= ∠D′A′C ′. �

Exercise 4. Show that the ray
−−→
A′D′ in the above proposition is the unique ray with the

required property. Hint: the proof of the following might give a clue.

Proposition 19 (Angle Subtraction). Suppose that D is interior to ∠BAC, and that D′ is
interior to ∠B′A′C ′. If ∠BAD ∼= ∠B′A′D′ and ∠BAC ∼= ∠B′A′C ′ then ∠DAC ∼= ∠D′A′C ′.

Proof. By Prop. 18, there is a ray
−−−→
A′D′′ where

−−→
A′B′−−

−−−→
A′D′′−−

−−→
A′C ′ and ∠BAD ∼= ∠B′A′D′′

and ∠DAC ∼= ∠D′′A′C ′. We will prove the result by showing that
−−→
A′D′ =

−−−→
A′D′′.

By definition of betweenness of rays, D′′ is in the interior of ∠B′A′C ′. By definition of

interior of an angle this implies that D′′ ∼l C
′ where l =

←−→
A′B′. Similarly D′ ∼l C

′. Thus

D′′ ∼l D
′. By the uniqueness statement of Axiom C-5,

−−→
A′D′ =

−−−→
A′D′′. �

4. Ordering Angles by Size

Now we define and investigate inequality for angles. We will follow the pattern of inequal-
ities for segments in Section 2.

Definition 6 (< for Angles). Let ∠BAC and ∠EDF be angles. We say ∠BAC < ∠EDF

(or ∠EDF > ∠BAC) if there is a ray
−−→
DG such that

−−→
DE --

−−→
DG --

−−→
DF and ∠BAC ∼= ∠EDG.

In other words, there is a point G is in the interior of ∠EDF such that ∠BAC ∼= ∠EDG.

Proposition 20 (Substitution). Let α, α′, β, β′ be angles. If α < β and α ∼= α′ then α′ < β.
If α < β and β ∼= β′ then α < β′.

Proof. The first claim is simple. Suppose β = ∠CBD. Then there is a point X interior to
∠CBD so that α ∼= ∠CBX. Thus α′ ∼= ∠CBX (Axiom C-4). Thus α′ < ∠CBD.

The second claim requires use of Proposition 18. Suppose β = ∠CBD and β′ = ∠C ′B′D′.
By definition of < there is a point X interior to ∠CBD so that α ∼= ∠CBX. By Propo-
sition 18 there is a point X ′ in the interior of ∠C ′B′D′ so that ∠C ′B′X ′ ∼= ∠CBX. Thus
α ∼= ∠C ′B′X ′ (Axiom C-4). So, by definition, α < ∠C ′B′D′. �

Euclid’s Common Notion 5 states that ‘the whole is greater than its parts.’ The following
shows that this is true for angles with our definition of < (and thinking of angle interiors
when saying the word ‘part’).

Proposition 21. If
−→
AB --

−−→
AD --

−→
AC then ∠BAD < ∠BAC.

Proof. This follows directly from Definition 6 together with the fact that ∠BAD ∼= ∠BAD.
�

An important property of < is transitivity:

Proposition 22 (Transitivity). If α, β, γ are angles such that α < β and β < γ, then α < γ.

Proof. Write β = ∠CBD and γ = ∠FEG. By definition of <, there is a ray
−−→
BX such that−−→

BC --
−−→
BX --

−−→
BD and α ∼= ∠CBX, and there is a ray

−−→
EY such that

−→
EF --

−−→
EY --

−−→
EG

and β ∼= ∠FEY . By Proposition 18, there is a ray
−−→
EX ′ such that

−→
EF --

−−→
EX ′ --

−−→
EY and

∠FEX ′ ∼= ∠CBX. Observe that ∠FEX ′ ∼= α.
8



By the squeezing property of ray betweenness (of Incident-Betweenness Geometry),

−→
EF --

−−→
EX ′ --

−−→
EG.

Thus α < ∠FEG. �

Before proving trichotomy, it is useful to have the following:

Proposition 23. Suppose that α and β are supplementary angles, and that α′ and β′ are
also supplementary angles. If α > α′ then β < β′.

Proof. Write α = ∠BAD and β = ∠DAC where B ∗A ∗C. Since α′ < α, there is a ray
−→
AE

such that
−→
AB --

−→
AE --

−−→
AD and ∠BAE ∼= α′. By Proposition 14, ∠EAC ∼= β′.

Since B ∗ A ∗ C and
−→
AB --

−→
AE --

−−→
AD, we have

−→
AE --

−−→
AD --

−→
AC (by a proposition from

Incidence-Betweenness Geometry). By Proposition 21, ∠DAC < ∠EAC. But ∠DAC = β,
so β < ∠EAC. Since ∠EAC ∼= β′, it follows that β < β′ (Proposition 20). �

Lemma 24. Given an angle α, it cannot happen that α < α.

Proof. Suppose α < α. Write α = ∠BAD. By definition of < there is a point X in the
interior of ∠BAD such that ∠BAX ∼= ∠BAD. By definition of angle interior, X and D must

be on the same side of
←→
AB. By the uniqueness claim of Axiom C-5,

−−→
AX =

−−→
AD contradicting

that X is interior to ∠BAD. �

Proposition 25 (Angle Trichotomy). Given angles α and β, exactly one of the following
occurs: (i) α < β, (ii) α ∼= β, (iii) β < α.

Proof. Let B ∗ A ∗ C be points on a line (Axioms I-2, B-2). Let D and E be points on the

same side of
←→
BC such that ∠BAD ∼= α and ∠BAE ∼= β (Axiom C-4). By the Supplementary

Interior Proposition (Part 2) of Inclusion-Betweenness Geometry, One of the following must

occur: (i) E is in the interior of ∠BAD, (ii) E is on the ray
−−→
AD, (iii) E is in the interior of

the supplementary angle ∠DAC.
In case (i), ∠BAE < ∠BAD (Proposition 21). So α < β (Proposition 20). In case (ii),
∠BAE = ∠BAD. So α ∼= β (transitivity of ∼=). Finally, in case (iii), ∠EAC < ∠DAC
(Proposition 21). So by Proposition 23, ∠BAD < ∠BAE. So β < α (Proposition 20).

We have shown at least one of (i), (ii), (iii) occur. Now we must show at most one occurs.
Suppose (i) and (iii) hold. Then α < α by transitivity. Suppose (i) and (ii) hold. Then
α < α by substitution. Suppose (ii) and (iii) hold. Then α < α. We conclude that, in any
of these cases, α < α holds. This contradicts Lemma 24. �

5. Right Angles and Perpendicular Lines

The following is similar to a definition in the Elements (Definition 10 of Book I).

Definition 7. Let α be an angle. Suppose α has a supplementary angle congruent to itself,
then α is said to be a right angle.

Here is a basic consequence of the definition of right angle.

Proposition 26. Let α be a right angle. (i) If γ ∼= α then γ is right. (ii) If γ is supplemen-
tary to α then γ is right.
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Proof. By Definition 7, α has a supplementary angle β such that α ∼= β.
To prove the first claim, suppose γ ∼= α. Let δ be supplementary to γ (Supplementary

Existence Proposition in Incidence-Betweenness Geometry). By Proposition 14, δ ∼= β. By
transitivity of congruences (Axiom C-4), γ ∼= δ. Thus γ is right.

To prove the second claim, observe that β might not be equal to γ (or else it would be
easy). We need to use Proposition 14: since α ∼= α it follows that β ∼= γ. Since α ∼= β,
γ ∼= α. So γ is congruent to its supplementary angle. Thus γ is right. �

Euclid took as a postulate, his Postulate 4, that all right triangles are congruent. We do
not need to take this as an axiom, but we can make it into a theorem.

Proposition 27. Any two right angles are congruent.

Proof. Let α be a right angle with supplementary angle β such that α ∼= β. Let α′ be a right
angle with supplementary angle β′ such that α′ ∼= β′. Our goal is to show α ∼= α′.

Suppose instead that α < α′. Then β′ < β by Proposition 23. Thus β′ < α by subsititution
using α ∼= β (Proposition 20), and again α′ < α by substitution using α′ ∼= β′. Since α < α′

and α′ < α, we contradict angle trichotomy (Proposition 25).
We have shown that α < α′ cannot hold. Similarly, α′ < α cannot hold. Thus, by angle

trichotomy (Proposition 25) we must have that α ∼= α′. �

Definition 8 (Perpendicular Line). Two lines l and m are said to be perpendicular if the
following holds: the lines intersect at a point A, and there is a point B 6= A on l and a point
C 6= A on m such that ∠BAC is a right angle. If l and m are perpendicular, we sometimes
write l ⊥ m.

Remark. Suppose l and m are perpendicular because one choice of B and C resulted in a
right angle ∠BAC. Then any other choice of B and C will also give a right angle. To see

this, suppose that B is replaced by B′ for example. If B′ is on the ray
−→
AB then we get the

same angle, but if B′ is on the opposite ray then we get supplementary angles. However, we
proved above that supplementary angles of right angles are also right (Proposition 26).

Now we consider the existence of perpendicular lines and right angles. The following is
related the Euclid’s Proposition I-12.

Proposition 28. If l is a line and P is a point not on l then there is a line m passing
through P that is perpendicular to l.

Remark. The above can be extended to give existence and uniqueness. This will be done in
the next section.

Proof. Let A and B be two points on l (Axiom I-2). let
−−→
AP ′ be a ray on the side of l not

containing P such that ∠BAP ∼= ∠BAP ′ (Axiom C-5). By Axiom C-2, we can choose P ′

along this ray in such a way that AP ∼= AP ′. Since P and P ′ are on opposite sides of l,
there is a point Q ∈ l such that P ∗Q ∗ P ′.

If A = Q, then ∠BQP ∼= ∠BQP ′. Since ∠BQP and ∠BQP ′ are supplementary, they

are, by definition, right angles. So l is perpendicular to m =
←→
PQ and we are done. So from

now on assume that A 6= Q.

Observe that ∠BAP = ∠QAP if B is on
−→
AQ, otherwise ∠BAP and ∠QAP are supplemen-

tary. A similar observation holds for ∠BAP ′ and ∠QAP ′. Since ∠BAP ∼= ∠BAP ′ it follows
10



(from Proposition 14 if necessary) that ∠QAP ∼= ∠QAP ′. So, by SAS, 4AQP ∼= 4AQP ′.
In particular, ∠AQP ∼= ∠AQP ′. But these angles are supplementary since P ∗Q ∗P ′. Thus

∠AQP is right. By definition, l is perpendicular to m =
←→
PQ. �

Corollary 29. Right angles exist. Perpendicular lines exist.

Proof. From incidence-betweenness geometry we know that there exists a line, and a point
not on the line. Now apply the above theorem to this line and point. �

The following is related the Euclid’s Proposition I-11.

Proposition 30. If l is a line and P is a point on l then there is a unique line m passing
through P that is perpendicular to l.

Proof. Let α be a right angle. It exists by the previous corollary. Let Q be a point on l not

equal to P (Axiom I-2). By Axiom C-5, there is a unique ray
−→
PC such that ∠QPC ∼= α.

By Proposition 26, ∠QPC is a right angle. So m =
←→
PC is perpendicular to l, and we have

established the existence claim.
Suppose m′ is perpendicular to l and contains P . Use Axiom I-2 and B-2 to find a point

C ′ ∈ l′ so that C and C ′ are on the same side of l. Apply the uniqueness claims of Axiom
C-5 to conclude that m = m′. The details are left to the reader. �

Exercise 5. Fill in the details in the proof of the uniqueness claim for the above proposition.

6. Parallel Lines

Recall from the previous handout that distinct lines are parallel if and only if they do not
intersect. Parallel lines are an important concept in this course. In this section, we prove a
few basic results that do not depend on any particular parallel axiom. We begin with the
Alternate Interior Angle Theorem, which is essentially Euclid’s Proposition I-27.

Theorem 31 (Alternate Interior Angle). Suppose C and D are on opposite sides of
←→
AB. If

∠CAB ∼= ∠DBA, then
←→
AC and

←→
BD are parallel.

Proof. Suppose
←→
AC and

←→
BD are not parallel. Our first goal is to show that if they intersect

on one side of the line
←→
AB they have to intersect on both sides.

So suppose that
←→
AC and

←→
BD intersect at a point X on the side of

←→
AB containing C. So

X is on the ray
−→
AC. Observe that D ∗ B ∗X since D and X are on opposite sides of

←→
AB.

By Axiom C-2 there is a point Y on
−−→
BD such that BY ∼= AX.

By SAS, 4ABX ∼= 4BAY . In particular ∠ABX ∼= ∠BAY . Now since X and Y are
on opposite sides of l, and X, Y,B are collinear, we have X ∗ B ∗ Y . So the angle ∠ABX
is supplementary to ∠ABY . By Proposition 16, and the fact that ∠Y BA ∼= ∠XAB and

∠ABX ∼= ∠BAY , we must have that X,A, Y are collinear. Thus Y is on
←→
AC =

←→
AX.

We have established that both X and Y are on both
←→
AC and

←→
BD. The points X and

Y are distinct since they are on opposite sides of
←→
AB. By Axiom I-1 (uniqueness) we have

←→
AC =

←→
XY =

←→
BD. This line intersects

←→
AB in both A and B, contradicting the earlier result

that distinct lines intersect in at most one point. From this contradiction we conclude that←→
AC ‖

←→
BD �
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Corollary 32. If l and l′ are distinct lines perpendicular to the same line m. Then l ‖ l′.

Proof. Let A be the intersection of l with m. Let B be the intersection of l′ with m. By the
uniqueness claim of Proposition 30, A 6= B. Let C be a point on l not equal to A (Axiom
I-2). Let D be a point on l′ not equal to B (Axiom I-2). We can assume that D is on the
side of l not containing C (use Axiom B-2 if necessary to replace D with another point).

Since l ⊥ m, we have ∠CAB is right. Since l′ ⊥ m we have ∠DBA is right. By
Proposition 27, ∠CAB ∼= ∠DBA. By the Alternate Interior Angle Theorem, l ‖ l′. �

Proposition 28 can now be strengthened to include existence.

Proposition 33 (Existence and Uniqueness of Perpendiculars). If l is a line and P is a
point not on l then there is a unique line m passing through P that is perpendicular to l.

Proof. Existence was proved in Proposition 28. So now suppose m and m′ are distinct
lines, perpendicular to l and containing P . By the above corollary, they are parallel. This
contradicts the fact that they both contain P . �

Finally, we can show that parallel lines exist. This is related to Euclid’s Proposition I-31.

Proposition 34 (Existence of Parallels). Given a line l and a point P not on l, there is at
least one line l′ that is parallel to l.

Exercise 6. Prove the above theorem. Hint: use Proposition 33 followed by Proposition 30
and Corollary 32.

7. Inequalities Involving Triangles

Now we study a variety of results all related to comparisons of sides and angles of triangles.
We begin with the Exterior Angle Theorem, which is Euclid’s Proposition I-16.

Theorem 35 (Exterior Angle). Given a triangle 4ABC and a point D such that B ∗C ∗D,
then the exterior angle ∠ACD is greater than both opposite interior angles ∠A and ∠B.

Proof. We divide this into two theorems: part (i) ∠ACD > ∠A, and part (ii) ∠ACD > ∠B.
To prove part (i) we suppose it fails. By trichotomy, this means either ∠ACD ∼= ∠A or

∠ACD < ∠A. If ∠ACD ∼= ∠A, then
←→
AB ‖

←→
CD by the Alternate Interior Angle Theorem.

However,
←→
AB and

←→
CD intersect at the point B, a contradiction.

Suppose that ∠ACD < ∠A. Then, by definition there is a ray
−→
AE interior to ∠A such

that ∠CAE ∼= ∠ACD. By the Crossbar Theorem, we can choose E so that B ∗E ∗C. Note

that D and E are on opposite sides of
←→
AC (why?) and that ∠ACD ∼= ∠CAE. So by the

Alternate Interior Angle Theorem
←→
CD ‖

←→
AE. However, E is on both

←→
CD (why?) and

←→
AE,

a contradiction.
In either case, we get a contradiction. Thus ∠ACD > ∠A, finishing the proof of part (i).
Now we consider part (ii) of the theorem. Let F be a point such that A∗C∗F . Then ∠ACD

and ∠BCF are vertical angles. So ∠ACD ∼= ∠BCF by the Vertical Angles Proposition
(Proposition 15). Now apply part (i) of the current theorem to the case of ∠BCF opposite
to ∠B. So ∠BCF > ∠B. By substitution (Proposition 20), ∠ACD > ∠B. �

Exercise 7. Show that D and E, in part (i) of the above proof, are on opposite sides of
←→
AC

as claimed.
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One corollary of this theorem is that the other two angles of a right triangle are acute.
First some definitions.

Definition 9. If 4ABC is a triangle with right angle ∠A, then 4ABC is called a right
triangle, the sides AB and AC are called legs, and BC is called the hypotenuse.

Definition 10. Let β be a right angle. If α is an angle such that α < β then α is an acute
angle. If α is an angle such that α > β then α is an obtuse angle.

Proposition 36. If 4ABC is a right triangle with right angle ∠A, then ∠B and ∠C are
both acute angles.

Exercise 8. Use the Exterior Angle Theorem to prove the above theorem.

Euclid’s Proposition I-18 asserts that given two angles of a triangle, the larger is the angle
opposite the larger side. Proposition I-19 asserts that given two sides, the larger is the side
opposite the larger angle. These are combined here in the following:

Proposition 37. Let 4ABC be a triangle. Then BC > AC if and only if ∠A > ∠B.

Proof. Divide this into two propositions: part (i) BC > AC =⇒ ∠A > ∠B, and part (ii)
the converse.

Part (i). If BC > AC then by definition of < there is a point D such that C ∗D ∗B and
CD ∼= AC. By the Crossbar-Betweenness Theorem, D is interior to ∠A, so ∠CAD < ∠A
(Proposition 21). By the Isosceles Base Angles Theorem (Theorem 4), ∠CAD ∼= ∠ADC.
By the Exterior Angle Theorem (Theorem 35), ∠ADC > ∠B. By the transitive and substi-
tuation properties of <, we get ∠A > ∠B.

Part (ii). Suppose ∠A > ∠B. By trichotomy, BC ∼= AC or BC < AC or AC < BC.
If BC ∼= AC then ∠A ∼= ∠B by the Isosceles Base Angles Theorem (Theorem 4), which
contradicts the hypothesis that ∠A > ∠B. If BC < AC, then apply part (i) of the current
proposition to conclude that ∠A < ∠B. This contradicts the hypothesis that ∠A > ∠B.
We get contradictions in the other cases, so BC > AC. �

The following exercise is useful in the proof of the Proposition 39 below:

Exercise 9. Suppose
−−→
AD =

−→
AE. In other words, suppose that D and E are non-vertex

points on the same ray. Then AD < AE implies A ∗ D ∗ E. Hint: use the definition of <
together with the uniqueness claim of Axiom C-2. Note: the converse statement was proved
earlier in this handout.

The following lemma is useful in the proof of the proposition that follows.

Lemma 38. Let 4ABC be a triangle, and D a point such that B ∗D ∗C. If AC > AB or
AC ∼= AB then AC > AD.

Proof. By the Exterior Angle Theorem (Theorem 35), ∠ADC > ∠B. If AC > AB then
∠B > ∠C by Proposition 37, so ∠ADC > ∠C by transitivity. If AC ∼= AB then ∠B ∼= ∠C
by Theorem 4, so ∠ADC > ∠C by substitution. In either case ∠ADC > ∠C. Thus
AC > AD by Proposition 37. �

Exercise 10. Draw sketches illustrating the above lemma, and the following proposition.
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Proposition 39. Let 4ABC and 4A′B′C ′ be two triangle such that AB ∼= A′B′ and
AC ∼= A′C ′. Then ∠BAC > ∠B′A′C ′ if and only if BC > B′C ′.

Remark. The above proposition combines Euclid’s Propositions I-24 and I-25.

Proof. Part (i): from the assumption ∠BAC > ∠B′A′C ′ we wish to show BC > B′C ′.
By trichotomy, either AC ∼= AB or one of AC and AB is greater than the other; without

loss of generality assume AC ∼= AB or AC > AB. By the definition of > there is a point D
interior to ∠A such that ∠BAD ∼= ∠B′A′C ′, and by the Crossbar Theorem we can choose
D such that B ∗D ∗ C. By Lemma 38, AC > AD.

Let E be a point of the ray
−−→
AD such that AE ∼= AC (Axiom C-2). By substitution,

AE > AD, so A ∗D ∗E (Exercise 9). This implies that B,C,E are non-collinear, so we can
legitimately speak of the triangle 4BCE.

Since B ∗ D ∗ C, the Crossbar-Betweenness Proposition implies that D is interior to
∠CEB, so ∠CED < ∠CEB (Proposition 21). By the Isosceles Base Angle Theorem,
∠AEC ∼= ∠ACE, but ∠AEC is just ∠CED. So ∠CED ∼= ∠ACE. By substitution into
∠CED < ∠CEB we get ∠ACE < ∠CEB.

Since A∗D∗E, the Crossbar-Betweenness Proposition implies that D is interior to ∠ACE,
so ∠DCE < ∠ACE (Proposition 21). By transitivity, ∠DCE < ∠CEB. Now ∠DCE is
just ∠BCE, so ∠BCE < ∠CEB. By Proposition 37, BE < BC.

By SAS, 4ABE ∼= 4A′B′C ′. So BE ∼= B′C ′. By substitution, B′C ′ < BC as desired.

Part (ii): from BC > B′C ′ we wish to show ∠A > ∠A′. Suppose otherwise. By trichotomy
of angles, this implies ∠A ∼= ∠A′ or ∠A < ∠A′. Suppose ∠A ∼= ∠A′, then 4ABC ∼=
4A′B′C ′ by SAS. So BC ∼= B′C ′, a contradiction to trichotomy for segments. Finally,
suppose ∠A < ∠A′. Then by part (i) of the current theorem, BC < B′C ′, a contradiction
to trichotomy for segments. In any case, we get a contradiction. So ∠A > ∠A′. �

Informally speaking, the following proposition says that the sum of two sides of a triangle
is always greater than the third, and so corresponds to Euclid’s Proposition I-20. Formally,
we have not yet discussed the meaning of XY + ZW for general segments. In the special
case where A ∗B ∗D you can think of AB+BD as being AD, but we will wait until a later
document to officially define + in the context of general segments. Observe that the symbol
+ is nowhere formally defined in this document.

Proposition 40 (Triangle Inequality: first form). Let 4ABC be a triangle, and let D be a
point such that A ∗B ∗D and BD ∼= BC. Then AC < AD.

Proof. Observe that 4BCD is isosceles. So ∠BCD ∼= ∠BDC.
Since A∗B∗D, the point B is interior to ∠ACD by the Crossbar-Betweenness Proposition.

So ∠BCD < ∠ACD by Proposition 21. By substitution, ∠BDC < ∠ACD. Observe that
∠BDC is just ∠ADC. So ∠ADC < ∠ACD. By Proposition 37, AC < AD. �

8. Triangle Congruence Theorems

We begin with Angle-Angle-Side which corresponds to the second part of Euclid’s Propo-
sition I-26.

Proposition 41 (AAS). Let 4ABC and 4A′B′C ′ be triangles. Suppose BC ∼= B′C ′.
Suppose also that ∠B ∼= ∠B′ and ∠A ∼= ∠A′. Then 4ABC ∼= 4A′B′C ′.
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Proof. By Axiom C-6 there is a point D such that 4DBC ∼= 4A′B′C ′, and where D and A

are on the same side of
←→
BC. In particular, ∠DBC ∼= ∠A′B′C ′ ∼= ∠ABC. By the uniqueness

assertion of Axiom C-5,
−−→
BD ∼=

−→
BA. So B ∗ A ∗D or A = D or B ∗D ∗ A.

If B∗A∗D then ∠BAC > ∠BDC by the Exterior Angle Theorem. But ∠BDC ∼= ∠A′, so
∠BAC > ∠A′ by substitution. This contradicts our hypothesis (that ∠A ∼= ∠A′). Likewise,
B ∗D ∗ A leads to a contradiction.

Since B ∗A ∗D and B ∗D ∗A lead to contradiction, A = D. So 4ABC ∼= 4A′B′C ′. �

The following corresponds to the first part of Euclid’s Proposition I-26.

Proposition 42 (ASA). Let 4ABC and 4A′B′C ′ be triangles. Suppose BC ∼= B′C ′.
Suppose also that ∠B ∼= ∠B′ and ∠C ∼= ∠C ′. Then 4ABC ∼= 4A′B′C ′.

Proof. By Axiom C-6 there is a point D such that 4DBC ∼= 4A′B′C ′, and where D and A

are on the same side of
←→
BC. In particular, ∠DBC ∼= ∠A′B′C ′ ∼= ∠ABC. By the uniqueness

assertion of Axiom C-5,
−−→
BD ∼=

−→
BA. A similar argument shows

−−→
CD ∼=

−→
CA.

So we have two lines:
←→
BD =

←→
BA and

←→
CD =

←→
CA that intersect in both D and A. The

lines
←→
BA and

←→
CA can intersect in at most one point by an earlier result (they are distinct

lines since A, B, and C are not collinear). So A = D. Since 4DBC ∼= 4A′B′C ′, we get
4ABC ∼= 4A′B′C ′ as desired. �

The following corresponds to Euclid’s Proposition I-6.

Corollary 43. If two distinct angles of a triangle are congruent then the triangle is isosceles.
If all three angles of a triangle are congruent then the triangle is equilateral.

Proof. Suppose 4ABC is such that ∠B ∼= ∠C. We have all the hypotheses needed for ASA:
∠B ∼= ∠C and BC ∼= CB and ∠C ∼= ∠B. Thus, by ASA, 4ABC ∼= 4ACB. So AB ∼= AC
and the triangle is isosceles.

If in addition ∠A ∼= ∠B, then a similar argument gives BC ∼= AC. So all three sides are
congruent and the triangle is equilateral. �

The following corresponds to Euclid’s Proposition I-8.

Proposition 44 (SSS). If AB ∼= A′B′ and BC ∼= B′C ′ and CA ∼= C ′A′, where 4ABC and
4A′B′C ′ are triangles, then 4ABC ∼= 4A′B′C ′.

Proof. Since AB ∼= A′B′ and AC ∼= A′C ′, we can apply Proposition 39. Suppose ∠A > ∠A′,
then Proposition 39 gives us that BC > B′C ′, contradiction our hypothesis. Similarly the
supposition ∠A′ > ∠A gives a contradiction. Thus, by trichotomy, we must have ∠A ∼= ∠A′.
By SAS, 4ABC ∼= 4A′B′C ′. �

Exercise 11. Draw a counter-example to angle-side-side. Do so by drawing triangles4ABC
and 4ABC ′ that differ in only one vertex, and make B,C, and C ′ collinear. You do not
have to rigorously justify your counter-example, but make it clear from the drawing that it
is a counter-example.

Although there is no ASS theorem in geometry (at least not without an extra hypothesis),
for right triangles we do get such a theorem.

Proposition 45 (HL). Let 4ABC and 4A′B′C ′ be right triangles with right angles ∠A
and ∠A′. If BC ∼= B′C ′ and AB ∼= A′B′ then 4ABC ∼= 4A′B′C ′.
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Proof. By Axiom C-6 there is a point D such that 4ABD ∼= 4A′B′C ′, and we can choose

D to be on the side of
←→
AB not containing C. Observe that 4ABD is a right triangle.

Let α and β be supplementary right angles. These exist by Corollary 29. Since all
right triangles are congruent (Proposition 27) we have ∠BAC ∼= α and ∠BAD ∼= β. By
Proposition 16, to C,A,D are collinear.

The line through C,A,D cannot contain B since A,B,C are non-collinear. Thus C,D,B
cannot be collinear, and 4CDB exists. Since BC ∼= B′C ′ and B′C ′ ∼= BD, the triangle
4CDB is isosceles. So ∠DCB ∼= ∠CDB (Theorem 4).

Observe that ∠CDB = ∠ADB and ∠DCB = ∠ACB (since C ∗A∗D). We conclude that
∠ACB ∼= ∠ADB. Since ∠CAB and ∠DAB are right, they are congruent (Proposition 27).
So byAAS we have4ABC ∼= 4ABD. But4ABD ∼= 4A′B′C ′, so4ABC ∼= 4A′B′C ′. �

9. Midpoints and Bisectors

Definition 11 (Midpoint). Let AB be a line segment. A midpoint of AB is a point M such
that A ∗M ∗B and AM ∼= MB.

We will now prove that midpoints exist. First we give three lemmas.

Lemma 46. If a segment has a midpoint, then it is unique.

Proof. Suppose M and M ′ are distinct midpoints of AB. Without loss of generality, we
assume A-M -M ′-B. So M ∗M ′ ∗B, which implies M ′B < MB (Proposition 10). Likewise,
A ∗M ∗M ′, which implies AM < AM ′. Since AM ′ ∼= M ′B, AM < M ′B by substitution.
By transitivity, we get AM < MB, contradicting the definition of midpoint. �

The next two lemmas concern the construction used in the main proposition.

Lemma 47. Suppose that AB is a segment and that C and D are points on opposite sides

of
←→
AB such that ∠BAC and ∠ABD are right. Then CD cannot contain A or B.

Proof. If A ∈ CD then A,C,D are collinear. So D is on the line
←→
AC. By the Alternate

Interior Angle Theorem,
←→
AC ‖

←→
BD, but these lines intersect in D. This is a contradiction.

Likewise B ∈ CD leads to a contradiction. �

Lemma 48. Suppose that AB is a segment and that C and D are points on opposite sides

of
←→
AB such that ∠BAC and ∠ABD are right. Then CD must intersect

←→
AB is a point M

such that A ∗M ∗B.

Proof. Since C and D are on opposite sides of
←→
AB, the segment CD must intersect

←→
AB at

some point M . From Lemma 47, A,B,M are distinct. By Axiom B-3, either M ∗ A ∗ B or
A ∗M ∗B or A ∗B ∗M .

Suppose M ∗ A ∗ B. Then 4MAC is a right triangle with right angle ∠MAC (Propo-
sition 26). By Proposition 36, ∠AMC is acute. However, ∠AMC is an external angle to
4MBD, and by the External Angle Theorem ∠AMC > ∠MBD. However, ∠MBD =
∠ABD is a right angle. Thus ∠AMC is both acute and obtuse, a contradiction.

A similar contradiction occurs if A ∗B ∗M . Thus A ∗M ∗B is the only possibility. �

Proposition 49 (Midpoint Existence). Every segment has a unique midpoint.
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Proof. Let AB be a segment. Our goal is to show that AB has a unique midpoint. Let
←→
AC

be a line perpendicular to
←→
AB containing the point A. Such a line exists by Proposition 30.

By the definition of perpendicular line (and the remark that follows it), we have that ∠BAC

is a right angle. By Axiom C-5, there is a ray
−−→
BD such that ∠ABD ∼= ∠BAC, and such

that C and D are on opposite sides of
←→
AB. By Proposition 26, ∠ABD is right. By Axiom

C-2, we can choose D so that AC ∼= BD.

By Lemma 48, the segment CD intersects
←→
AB at a point M with A∗M ∗B. Observe that

C∗M∗D, so by the Vertical Angles Proposition, ∠AMC ∼= ∠BMD. Also ∠MAC ∼= ∠MBD
since they are both right, and AC ∼= BD. Thus by AAS, 4AMC ∼= 4BMD. In particular,
AM ∼= BM . We conclude that M is a midpoint of AB. It is the unique midpoint by
Lemma 46. �

Remark. The above proposition corresponds to Euclid’s Proposition I-10. However, our proof
is different: it doesn’t require the existence of equilateral triangles.

Definition 12 (Angle Bisector). Let ∠BAC be an angle. A bisector of ∠BAC is a ray
−−→
AD

such that
−→
AB --

−−→
AD --

−→
AC and ∠BAD ∼= ∠DAC.

The following proposition corresponds to Euclid’s Proposition I-9.

Proposition 50 (Bisector Existence). Every angle has a unique bisector.

Proof. Let ∠BAC be an angle. Let C ′ be a point on
−→
AC such that AX ∼= AB (Axiom C-2).

We replace C with X if necessary, and so assume that 4BAC is isosceles with AC ∼= AB.

Let D be the midpoint of BC (Proposition 49). We leave it to the reader to show that
−−→
AD

is a bisector.
Now we show uniqueness. Suppose that

−−→
AD′ is also a bisector. Then

−−→
AD′ intersects BC

by the Crossbar Theorem. By replacing D′ with this intersection point, we can assume that
B ∗D′ ∗ C. We leave it to the reader to show that D′ is a midpoint of BC. But D is also
a midpoint. So D = D′ by the uniqueness claim of Proposition 49. This shows that the
bisector is unique. �

Exercise 12. Show that
−−→
AD in the above proof is a bisector.

Exercise 13. Show that D′ in the above proof is a midpoint of BC.

Definition 13 (Perpendicular Bisector). Let AB be a segment. A perpendicular bisector to

AB is a line l that (i) is perpendicular to
←→
AB and, (ii) intersects

←→
AB in the midpoint of AB.

Proposition 51. Every segment AB has a unique perpendicular bisector.

Exercise 14. Prove the above proposition.

Prof. Wayne Aitken, Cal. State, San Marcos, CA 92096, USA
E-mail address: waitken@csusm.edu

17


