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Abstract. A pair of polynomials f, g ∈ Fq[T ] is called a Davenport pair (DP)

if their value sets are equal, Vf(Fqt) = Vg(Fqt), for infinitely many extensions
of Fq. If they are equal for all extensions of Fq, i.e., for all t ≥ 1, then we say

that (f, g) is a strong Davenport pair (SDP). One may consider exceptional
polynomials and SDP’s as special cases of DP’s. Exceptional polynomials

and SDP’s have been successfully studied using monodromy/Galois-theoretic
methods. We use these methods to study DP’s in general, and analogous

situations for inclusions of value sets.
For example, if (f, g) is a SDP, then f(T )− g(S) ∈ Fq[T,S] is known to be

reducible. This has interesting consequences. We extend this to DP’s (that
are not pairs of exceptional polynomials) and use reducibility to study the

relationship between DP’s and SDP’s when f is indecomposable. Additionally,
we show that if (f, g) is a DP, then (deg f, qt − 1) = (deg g, qt − 1) for all

sufficiently large qt with Vf(Fqt) = Vg(Fqt). This extends Lenstra’s theorem

(Carlitz-Wan conjecture) concerning exceptional polynomials.

1. Introduction

Let Fq be a finite field with q elements, and let p denote its characteristic.
For any f ∈ Fq[T ] and finite extension Fqt of Fq, define the value set Vf (Fqt )
to be {f(a) | a ∈ Fqt}. Call (f, g) a Davenport pair over Fq if Vf (Fqt ) = Vg(Fqt )
for infinitely many values of t. For brevity, we use the acronym DP. We will see
that (f, g) is automatically a Davenport pair (DP) if Vf (Fqt) = Vg(Fqt) for one
sufficiently large value of t. Call (f, g) a strong Davenport pair (SDP) over Fq if
Vf (Fqt) = Vg(Fqt) for all t ≥ 1.

Davenport pairs are named in honor of H. Davenport, who, in the 1960’s, was
interested in a characteristic zero analogue of what we call SDP’s. He asked which
pairs (f, g) ∈ Q[T ] have value sets mod l which are equal for almost all primes l.
(See Section 3.2 below for more details.)

Call f ∈ Fq [T ] an exceptional polynomial if Vf (Fqt ) = Fqt for infinitely many
values of t. So f is exceptional if and only if (f, T ) is a DP. Thus both SDP’s and
exceptional polynomials are special types of Davenport pairs. We are interested in
the relationship between Davenport pairs on the one hand, and strong Davenport
pairs and exceptional polynomials on the other.

For example, if (f, g) is a SDP and (h1, h2) is a pair of exceptional polynomials,
then (f ◦ h1, g ◦ h2) is a DP. Such DP’s have equal value sets over the base field Fq ,
a property not possessed by all DP’s. However, consider the following.

Question 1.1. Suppose (f, g) is a DP over Fq where
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(1.1) q is sufficiently large and Vf (Fq) = Vg(Fq).
When is there a pair of exceptional polynomials (h1, h2) and a SDP (f ′, g′) such
that f = f ′ ◦ h1 and g = g′ ◦ h2?

Remark 1.2. In the above question, sufficiently large means that q is larger than a
bound depending on the degrees of f and g. Later we introduce the set Df,g which
allows us to replace (1.1) above with the more natural hypothesis 1 ∈ Df,g (making
the question meaningful even for small q).

We now describe the main results of this paper and their relationships to the
decomposition hypothesis, the heuristic principle that all DP’s satisfying (1.1) have
the decomposition described in the above question, or at least behave as if they
did.

If (f, g) is a SDP with deg f > 1, then f(T ) − g(S) ∈ Fq [S, T ] is reducible. It
follows that f ◦ h1(T ) − g ◦ h2(S) ∈ Fq [S, T ] is also reducible for any pair (h1, h2).
So the decomposition hypothesis suggests the following result (Theorem 4.8 and
Corollary 4.12). If (f, g) is a DP satisfing (1.1), and f is not an exceptional
polynomial, then f(T ) − g(S) ∈ Fq [S, T ] reducible over Fq.

As another example, consider the following theorem of Lenstra [CF95], conjec-
tured by Carlitz and Wan. If f ∈ Fq [T ] is exceptional, then gcd(deg f, q − 1) = 1.
It is also known that if (f, g) is a SDP, and if the degrees of f and g are prime
to the characteristic p, then deg f = deg g. Thus if f = f ′ ◦ h1 and g = g′ ◦ h2
where (f ′, g′) is a SDP, (h1, h2) is a pair of exceptional polynomials, and deg f and
deg g are prime to p, then gcd(deg f, q− 1) = gcd(deg g, q− 1). The decomposition
hypothesis suggests that this holds for all DP’s satisfying (1.1). This turns out to
be true; it is a consequence of our Theorem 5.4 (which is stronger since it makes
no assumption on the degrees of f and g).

Finally, consider our Theorem 8.1, a result consistent with the decomposition hy-
pothesis. Suppose that (f, g) is a DP, and that f is indecomposable. Suppose also
that f has degree prime to the characteristic p, and is neither an exceptional polyno-
mial nor linearly related to a cyclic polynomial. Then g = g′◦h for some SDP (f, g′).

We end this introduction with more questions related to DP’s.

Question 1.3. If (h1, h2) is a pair of polynomials such that (f ◦ h1, g ◦ h2) is a DP
for all SDP’s (f, g), must h1 and h2 be exceptional polynomials?

Other questions involvemultiplicities of values. Call (f, g) a DP with multiplicity
if there are an infinite number of values of t such that f and g not only have the
same value sets over Fqt , but the values occur with the same multiplicities. In other
words, f(T )−b and g(T )−b have the same number of roots in Fqt for each b ∈ Fqt .
Similarly, call (f, g) a SDP with multiplicity if the multiplicity condition occurs for
all values of t.

Question 1.4. Are there SDP’s which are not SDP’s with multiplicity? Are there
DP’s which are not DP’s with multiplicity?

The characteristic zero analogue of the first part of this question has been con-
sidered. In [Mül98, Conjecture 5.2], Muller conjectures a negative answer (pairs of
Kronecker conjugate polynomials are conjectured to be arithmetically equivalent).

The first author would like to thank M. Zieve and R. Guralnick for helpful
discussions, and MSRI and UCI for their support and hospitality.
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1.1. The Broader Context. A polynomial f ∈ Fq[T ] gives an algebraic map
f : A1 → A1, or, by adding points at infinity, an algebraic map f : P1 → P1.
Our approach, via the arithmetic and geometric monodromy groups associated
with the map f , or pairs of maps (f, g), extends considerably to include maps
between algebraic curves defined over Fq, and even to finite maps between higher-
dimensional varieties. However, we concentrate on polynomial maps. More can
be proven for such maps since they have a totally ramified point, infinity, and the
maps are between curves of genus zero. Also, limiting the exposition to polynomials
contributes to its clarity. However, the reader should be aware of the possibilities,
and the challenges of extending beyond polynomial maps.

Some readers may also be interested in the link between Davenport pairs and
such topics as Weil vectors, Galois stratification, and Chow motives. Here, a Weil
vector is the sequence of coefficients of a Poincaré series associated to a number-
theoretic counting problem. For example, if V is a projective variety over Fq, we
get the familiar Weil vector N = (N1, N2, . . . ) where Nt is the number of Fqt -
rational points of V . The associated Poincaré series is PV (X) =

∑∞
t=1NtX

t, and
the associated zeta function is ZV (X) = exp (

∑∞
t=1NtX

t/t).
Weil vectors also arise from other counting problems. For example, let V be a

scheme (reduced, separated) of finite type over Z. Consider the Weil vector N =
(N1, N2, . . . ) where Nt is the number of Z/pt-rational points which lift to Zp-
rational points. The rationality of the associated Poincaré series was established
by Denef [Den84].

Galois stratification is a tool for producing Weil vectors in a wide variety of
counting problems (see [FS76] and [FJ86]). Denef and Loeser ([DL]) have recently
shown that there is a vital link between Galois stratification and Chow motives.
Given twoWeil vectors N = (N1, N2, . . . ) andN ′ = (N ′

1, N
′
2, . . . ), the characteristic

set χ(N ,N ′) is {t ∈ N+|Nt = N ′
t}. Such characteristic sets, when the Weil vectors

arise from Galois stratification, form Frobenius progressions (Definition 4.5).
To consider the link between DP’s and these topics, consider your favorite equa-

tion Φ(T,U) = 0 where Φ ∈ Fq [T,U] and U = (U1 , . . . , Us). Consider also the
Weil vector N (Φ) = (N1(Φ), N2(Φ), . . . ) where Nt(Φ) is the number of solutions
over Fqt . You often substitute a polynomial or rational function f(T ) for T to get
the related equation Φ(f(T ),U) = 0. Write Φf for Φ(f(T ),U). Let (f, g) be a pair
of polynomials, and let χ(f, g) be the set of t with the property that Vf (Fqt) and
Vg(Fqt) are equal, and every value occurs with the same multiplicity. We assume
χ(f, g) is infinite. In other words, (f, g) is a DP with multiplicity. Observe that
χ(f, g) ⊆ χ(N (Φf ),N (Φg)).

This gives us a procedure for generating non-trivial (i.e., non-finite) characteristic
sets relating many different pairs of Weil vectors. The resulting characteristic sets
must contain a common Frobenius progression χ(f, g) regardless of your choice
of favorite equation. This suggests the importance of the the study of Frobenius
progressions of the form χ(f, g) from the more general Weil vector viewpoint.

To study the collection of such sets χ(f, g), one might wish to generate infinite
subsets of the same form using, say, exceptional polynomials. If h ∈ Fq [T ] is
exceptional, let Eh be the set of t where h : Fqt → Fqt is bijective (Eh = χ(h, T )
where T is the identity polynomial). Suppose (f, g) is a DP and h1 and h2 are
exceptional. Then, χ(f ◦ h1, g ◦ h2) contains Eh1 ∩ Eh2 ∩ χ(f, g). You must know
something about Eh1 , Eh2 , χ(f, g) to say their intersection is infinite. We see later
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that Eh1 ∩Eh2 ∩χ(f, g) is automatically infinite if f and g are indecomposable with
degree prime to p and not linearly related to cyclic polynomials (Theorem 8.1).

2. Notations and conventions

We note that (f(T ), f(T p)) is a SDP (as above, f ∈ Fq [T ], and p is the charac-
teristic of Fq). So, for value set problems, it is harmless to replace any polynomial
of the form f(T p) by f(T ). By repeating this process starting with a given poly-
nomial, we obtain a polynomial whose derivative is not the zero polynomial, and
whose value set, in all finite extensions, is the same as the original polynomial.
This justifies the following convention: all polynomials appearing in this paper will
be assumed to have non-zero derivatives.

Let F be a field. We are most interested in F = Fq especially when we are
considering value sets, but many of our results hold for more general F . Fix an
algebraic closure F (z) of F (z) where z is a fixed transcendental element over F ,
and regard F as a subfield of F (z). We use the letter T (as above) for a general
transcendental element not in F (z). We use S and T when we need two independent
transcendental elements (neither in F (z)).

For any f ∈ F [T ], let Ωf ⊆ F (z) be the splitting field of f(T )−z. Since f(T ) − z
has z-degree 1, it is irreducible in F (z)[T ]. It is also separable (the derivative f ′ is
assumed not to be the zero polynomial). Call Ĝf = Gal(Ωf/F (z)) the arithmetic
monodromy group of f . Let F̂f = Ωf ∩ F . Call Gf = Gal(Ωf/F̂f(z)) ⊆ Ĝf the
geometric monodromy group. Let n = deg(f), and let {x1, x2, . . . , xn} be the roots
of f(T ) − z in Ωf . If H is Ĝf or a subgroup, denote the elements of H which fix
xi by H(xi). For example, Ĝf(xi) = Gal(Ωf/F (xi)).

Think of f ∈ F [T ] as an algebraic map f : A1 → A1. By adding a point at
infinity, also regard a polynomial (or rational function) as an algebraic covering
map f : P1 → P1.

Now consider the case F = Fq . Here we abuse notation and write F̂f for F̂f . The
quotient Ĝf/Gf is isomorphic to the cyclic group Gal(Fqd/Fq) where d = [F̂f : Fq ].
Not only is Gal(Fqd/Fq) cyclic, but it is canonically isomorphic to Z/d by the map
sending the Frobenius automorphism a �→ aq to 1. Let Ĝf,t be the Gf -coset of
elements σ ∈ Ĝf for which σ|

bFf
is the map a �→ aq

t

. So Ĝf,t consists of elements

of Ĝf whose image in Z/d is congruent to t. Thus Ĝf,t depends only on t modulo d.
Now consider analogous definitions for pairs of polynomials (f, g), first for a

general field F . Let Ωf,g = Ωf · Ωg ⊆ F (z) be the splitting field of the prod-
uct (f(T ) − z)(g(T ) − z). Let F̂f,g = Ωf,g ∩ F . Define the arithmetic monodromy
group of the pair as Ĝf,g = Gal(Ωf,g/F (z)) and the geometric monodromy group
as Gf,g = Gal(Ωf,g/F̂f,g(z)).

Let {x1, x2, . . . , xn} be the roots of f(T ) − z, and {y1, y2, . . . , ym} be the roots
of g(T ) − z. Then Ĝf,g acts on {xi}, {yj}, and the cartesian product {xi} × {yj}.
For H equal to Ĝf,g or a subgroup, H(xi), H(yj), and H(xi, yj) have the usual
meanings as stabilizer subgroups.

Note that Ĝf,g is the fiber product of Ĝf and Ĝg over the common quotient
group Gal(Ωf ∩ Ωg/F (z)).
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Now consider the case F = Fq. We abuse notation and write F̂f,g for F̂f,g . As
before, we have the exact sequence

1 → Gf,g → Ĝf,g → Z/d → 1

where d = [F̂f,g : Fq ]. Define Ĝf,g,t as the elements of Ĝf,g mapping to t mod d.
So Ĝf,g,t is the Gf,g-coset of all σ whose restriction to Fqd is the automorphism
x �→ xq

t

.
We again consider a general field F . Call f ∈ F [T ] decomposable over F if

f = f1 ◦f2 with f1, f2 ∈ F [T ], deg(fi) > 1, i = 1, 2. Otherwise, f is indecomposable
over F .

If f, l1, l2 ∈ F [T ] are polynomials with deg l1 = deg l2 = 1, then we say f and
l1 ◦ f ◦ l2 are linearly related over F . Linearly related polynomials have isomorphic
monodromy groups and equivalent actions of their monodromy groups on their
respective root sets.

When comparing value sets, we are interested in a special type of linearly related
polynomial pairs. If f, l ∈ F [T ] are polynomials such that deg l = 1, then we say
that f and f ◦ l are linearly related on the inside over F . For example, a pair of
polynomials f, g ∈ Fq [T ] linearly related on the inside over Fq clearly forms a SDP.
We call such SDP’s trivial. As explained in the next section, there are examples of
nontrivial SDP’s.

If n is a positive integer then we consider the statement n is prime to the char-
acteristic of F to be vacuously true if F has characteristic zero.

3. Review of Earlier Results

We summarize some of what is known concerning value sets, exceptional poly-
nomials, SDP’s, and DP’s.

3.1. Value Sets from the Monodromy Point of View. Consider a polynomial
map as a covering map f : P1 → P1. Suppose b ∈ Fqt = A1(Fqt ) is not a branch
point for this map. Then b ∈ Vf (Fqt ) if and only if the associated Frobenius element
Frobt(b) ∈ Ĝf fixes at least one root of f(T ) − z. Further, the number of a ∈ Fqt

satisfying f(a) = b is equal to the number of fixed points of Frobt(b) acting on the
roots {xi}. We call this fact the Frobenius Principle, and note that it follows from
an early result of Artin ([Art23], Section 2).

Here Frobt(b) is i
(
Ωf ·Fqt/Fqt (z)

Pb

)
where Pb is the place of Fqt(z) associated to

b ∈ A1(Fqt),
(
L/K
P

)
is the Artin symbol, and i : Gal(Ωf · Fqt/Fqt(z)) → Ĝf is

the natural inclusion induced by restriction. The Artin symbol is defined up to
conjugacy, so the number of fixed points of Frobt(b) is well-defined.

Observe that Frobt(b) ∈ Ĝf,t. Conversely, the Chebotarev Density Theorem
implies that the proportion of b ∈ Fqt with Frobt(b) in a given conjugacy class
C ⊆ Ĝf,t is approximately proportional to the size of C. More precisely, if p(C) is
the proportion of b ∈ Fqt with Frobt(b) ∈ C, b not a branch point, then∣∣∣∣∣p(C)− |C|

|Ĝf,t|

∣∣∣∣∣ < B|C|q−t/2.

The best B depends on f , but we can find a B depending only on n = deg f .
For example, the bound of Proposition 5.16 of [FJ86], specialized to the current
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situation, gives B = 4(g + 2) where g is the genus of Ωf . There is a bound in
n for this genus g, and hence B. (By Riemann-Hurwitz, bounding g is related to
bounding the different divisor for Ωf/F̂f (z), which in turn is related to bounding the
sizes of higher ramification groups. Use the corollary to Proposition 4, Chapter IV,
§1, of [Ser79], together with obvious bounds on different divisor for F̂f (xi)/F̂f (z),
to bound the number of non-trivial higher ramification groups in the geometric
monodromy group Gf .)

For σ ∈ Ĝf,t, let N(σ) be the number elements of {x1, . . . , xn} fixed by σ. Then∑
σ∈ bGf,t

N(σ) =
∣∣∣Ĝf,t

∣∣∣ .(3.1)

Although this is a corollary of the the Chebotarev Density Theorem (by considering
t′ ≡ t mod d, where d = [F̂f : Fq] and t′ is large), one can also view it as a con-
sequence of the following group-theoretical lemma (see, e.g., [GW97], Lemma 3.1)
taking H = Gf , C = Ĝf,t, G ⊆ Ĝf the group generated by Gf and Ĝf,t, and r = 1.

Lemma 3.1. Let G be a finite group acting on a finite set S. Let H be a normal
subgroup of G such that G/H is cyclic. Finally, let C be a coset whose image
generates G/H. Then

1
|C|

∑
σ∈C

N(σ) = r

where r is the number of H-orbits in S which are also G-orbits, and where N(σ) is
the number of S-fixed points of σ ∈ G.

From (3.1), the following are equivalent:

(3.2) Every element of Ĝf,t fixes at least one element of {xi}.
(3.3) Every element of Ĝf,t fixes at most one element of {xi}.
(3.4) Every element of Ĝf,t fixes exactly one element of {xi}.

Remark 3.2. If any of the above conditions hold, then for all non-branch points
b ∈ Fqt exactly one root is fixed by Frobt(b). So, by the Frobenius Principle,
f : Fqt → Fqt is bijective, at least on the set of points mapping to non-branch
points.

When b ∈ Fqt is a branch point, one has a Frobenius coset instead of a Frobenius
element. To determine the number of a ∈ Fqt satisfying f(a) = b, consider the ac-
tion of the associated decomposition group D and inertia group I on the roots {xi}.
It is well-known that one counts I-orbits which are also D-orbits ([vdW35]). Using
Lemma 3.1 above with G = D, H = I, and C the Frobenius coset, we see that
the number of a ∈ Fqt mapping to b is the average number of {xi} fixed by σ as σ
varies over the Frobenius coset. We call this fact the Strong Frobenius Principle. In
particular, (3.4) implies bijectivity even when we allow points above branch points.
(Note: in the Frobenius Principle or the Strong Frobenius Principle, we can replace
Ĝf with the Galois group of any normal extension of Fq(z) containing Ωf).

Definition 3.3. Let 0 ≤ ε ≤ 1. The polynomial map f : Fqt → Fqt is said to
be ε-almost injective if the proportion of points b ∈ Fqt which either have at most
one a ∈ Fqt satisfying f(a) = b or are branch points is at least 1 − ε. Similarly,
f : Fqt → Fqt is said to be ε-almost surjective if the proportion of points b ∈ Fqt

which are either in the value set Vf (Fqt) or are branch points is at least 1− ε.
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The above considerations lead easily to the following theorem.

Theorem 3.4. Let 0 ≤ ε < 1/|Ĝf,t|, and let δ = 1/|Ĝf,t| − ε. If qt ≥ (B/δ)2

where B is the constant in the Chebotarev Density Theorem, then the following are
equivalent.

(3.5) f : Fqt → Fqt is ε-almost surjective.
(3.6) f : Fqt → Fqt is ε-almost injective.
(3.7) f : Fqt → Fqt is bijective.
(3.8) Every element of Ĝf,t fixes exactly one root of f(T ) − z.

For general qt, large or small, (3.8) implies (3.7).

Remark 3.5. See [Fri74, Lemma 2 and Theorem 1] for a generalization to multivari-
able polynomial maps An → An. This theorem has also been generalized [FGS93,
p. 186] to covering maps X → Y between absolutely irreducible curves over Fq .
(The statement in [FGS93] is essentially the case where ε = 0, but the methods
clearly work for small ε > 0.)

The upper bound for ε in the implication (3.5)⇒ (3.8) can be replaced by 1
deg f .

With a priori restrictions on the monodromy groups involved, one can often do
better (see [GW97]).

Corollary 3.6. A polynomial f ∈ Fq [T ] is exceptional if and only if any of the
equivalent conditions (3.2) to (3.7) hold for a suitable value of t and ε.

If (3.7) holds for t, then it holds for any divisor of t. This yields the following.

Corollary 3.7. If f ∈ Fq[T ] is an exceptional polynomial satisfying any of the
equivalent conditions (3.2) to (3.4) for t = t0, then these conditions hold for any t

satisfying gcd(t, d)| gcd(t0, d) where d = [F̂f : Fq].

A similar analysis gives a monodromy interpretation for Vf (Fqt) = Vg(Fqt).

Theorem 3.8. Let f, g ∈ Fq [T ]. Suppose that for some t,

(3.9) every σ ∈ Ĝf,g,t fixes an element of {xi} if and only if it fixes an element
of {yj} (as usual, {xi} are the roots of f(T ) − z and {yj} are the roots of
g(T ) − z).

Then Vf (Fqt ) = Vg(Fqt).
Conversely, if Vf (Fqt ) = Vg(Fqt ) for t sufficiently large, then (3.9) holds.

Remark 3.9. The converse above, which can be proved with the Chebotarev Den-
sity Theorem together with the Frobenius Principle, can be strengthened by re-
placing the hypothesis Vf (Fqt) = Vg(Fqt) with an ε-almost equality (analogous to
Theorem 3.4).

To prove that (3.9) implies Vf (Fqt) = Vg(Fqt ) one can use the Strong Frobe-
nius Principle (as in Remark 3.2) to cover both branch points and non-branch
points. Alternatively, one can use the following argument, a straightforward adap-
tation to the current situation of the second part of the proof of Lemma 19.27
of [FJ86]. Let b ∈ Vf (Fqt ), and let a ∈ Fqt be a root of f(T ) − b. Consider the
homomorphism Fq[x1] → Fqt with x1 �→ a (and so z �→ b). Extend this to a
homomorphism ϕ : R → Fq where R is the integral closure of Fq [z] in Ωf,g . Let
D(ϕ) ⊆ Ĝf,g(x1) be the decomposition group associated to ϕ (i.e., the subgroup
fixing kerϕ). A general fact about decomposition groups is that the homomorphism
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D(ϕ) → Gal(Fqs/Fq(a)) associated to the residue maps is surjective where Fqs is
the image of ϕ. Thus there is an element τ ∈ D(ϕ) whose image in Gal(Fqs/Fq(a))
is the qt-power Frobenius map u �→ uq

t

. Note that τ fixes x1, and that τ ∈ Ĝf,g,t.
It follows from (3.9) that τ fixes some yj . Let c = ϕ(yj). The image of τ acting
on Fqs fixes c. Thus, c ∈ Fqt . Since, g(c) = b, conclude b ∈ Vg(Fqt ).

For inclusions of value sets we have the following:

Theorem 3.10. Let f, g,∈ Fq [T ]. Suppose that for some t,

(3.10) every σ ∈ Ĝf,g,t which fixes an element of {xi} also fixes an element
of {yj}.

Then Vf (Fqt ) ⊆ Vg(Fqt).
Conversely, if Vf (Fqt ) ⊆ Vg(Fqt ) for t sufficiently large, then (3.10) holds.

Remark 3.11. We can replace (3.10) with the following.

(3.11) Every σ ∈ Ĝf,g,t(x1) fixes an element of {yj}.

3.2. Strong Davenport Pairs. A good reference for SDP’s is [Fri99] which uses
the following Galois theoretic characterization (a corollary of Theorem 3.8 above).

Corollary 3.12. The pair (f, g) of polynomials in Fq [T ] is a SDP if and only if

(3.12) for every σ ∈ Ĝf,g, σ fixes an element of {xi} if and only if σ fixes an
element of {yj}.

An analogous result holds for polynomials over number fields ([FJ86, Lemma
19.27] or [Mül98, Theorem 2.3]). In that case, Condition 3.12 is equivalent to to f
and g being Kronecker conjugate over a number field K, i.e., their value sets are
equal modulo all but a finite number of nonzero prime ideals of K.

The following well-known result ([Fri73, Proposition 3], [FJ86, Lemma 19.31],
and [Fri99]) will be generalized to DP’s below (Corollary 4.12).

Theorem 3.13. Let f, g ∈ Fq [T ]. If (f, g) is a SDP where deg f > 1, then
f(T ) − g(S) ∈ Fq[S, T ] is reducible.

This gives several immediate corollaries. For example, if f and g have relatively
prime degrees, then (f, g) is not a SDP. As another example, if (f, g) is a SDP
with each degree at most 3, then (f, g) is a trivial SDP. To see this, just note that
reducibility implies the existence of a linear factor, which implies that f and g are
linearly related on the inside.

Deeper corollaries exist. For example, when f : P1 → P1 and g : P1 → P1

are tamely ramified, the results in [Fri73] in characteristic 0 are relevant, implying
major restriction on the pair (f, g). We will now review these results.

Let K be a number field, and let f, g ∈ K[T ]. If f and g are Kronecker conjugate
and deg f > 1 then the analogue of Theorem 3.13 holds: f(T ) − g(S) is reducible.
This highly restricts f and g, especially in the case where f is indecomposable.
The reducibility of f(T )− g(S) together with the indecomposibility of f forces the
geometric monodromy group of f to be one of a small list, and it forces deg f to be
one of 7, 11, 13, 15, 21, and 31. The fact that (f, g) are Kronecker conjugate also
forces deg f = deg g. This together with the Grothendieck Lifting Theorem gives
the following theorem in positive characteristic.

Theorem 3.14. Consider a SDP (f, g) over Fq with the following properties:
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(3.13) f : P1 → P1 is tamely ramified.
(3.14) f is indecomposable.

Then deg f = deg g, and both deg f and Gf are restricted as above.

The case where f : P1 → P1 has wild ramification does not result in an upper
bound on the degree of f . In fact, we have the following.

Theorem 3.15 ([Fri99], Thm 5.7). Over any field Fq there are infinitely many n
prime to p for which nontrivial SDP’s (f, g) exist with n = deg f = deg g and f
indecomposable.

The monodromy groups appearing in these examples are subgroups of the pro-
jective linear groups over finite fields of characteristic p.

Note that if (f, g) is a SDP, then (h◦f, h◦g) is also a SDP for all h ∈ Fq [T ]. More
surprisingly, there are pairs (f, g) which are not SDP’s, and h ∈ Fq[T ] of positive
degree such that (h ◦ f, h ◦ g) is a SDP. Müller [Mül98, §4] gave examples of this
over number fields and they apply over suitable Fq . So, there are many non-trivial
SDP’s. Müller points out (in [Mül98, §5]) that his examples give polynomials with
equivalent permutation characters, so they yield SDP’s with multiplicity.

Finally we mention what is known concerning Davenport’s original question. If
K = Q there are no nontrivial Kronecker conjugate polynomials ([Fri73]) with f
indecomposable, or with f and g each compositions of two indecomposable poly-
nomials of degree at least 2 ([Mül98]). However, f(T ) = T 8 and g(T ) = 16T 8 are
Kronecker conjugate polynomials which are the composition of three indecompos-
able polynomials. See [Mül98] for more information.

3.3. Work Related to Davenport Pairs. Earlier work related to DP’s (which
are not assumed a priori to be SDP’s or exceptional polynomials) are not concerned
with DP’s per se, but study pairs with equal value sets over the ground field Fq .
However, when q is large, such pairs are DP’s (Corollary 4.2). For example, [Coh81]
studies pairs of rational functions f, g ∈ Fq(T ) satisfying Vf (Fq) ⊆ Vg(Fq). The
main result is a classification of such f and g with deg g ≤ 4, where the characteristic
is greater than 3 and q assumed large (with bounds depending on deg f). There has
also been other, much earlier work, by McCann and Williams (value set equalities
for polynomials of degree 3), Mordell (also for degree 3), and Carlitz (value set
inclusions with g(T ) = Tm).

Finally, [Ait98] studies the overlap between Vf (Fq) and Vg(Fq) when the two
sets are not equal, which, for large q, yields a criterion for whether or not two
polynomials form a DP.

4. Basic Results Concerning Davenport Pairs

Let f, g ∈ Fq [T ], and let d = [F̂f,g : Fq ]. Below are corollaries of Theorem 3.8.

Corollary 4.1. (f, g) is a DP if and only if, for some t, (3.9) holds.

Corollary 4.2. (f, g) is a DP if and only if for a sufficiently large t, Vf (Fqt ) =
Vg(Fqt).

Here, sufficiently large means that qt is greater than a bound which can be
chosen to depend only on the maximum of the degrees of f and g.

Condition (3.9) depends only on t mod d. Thus, if (3.9) holds for one t, it holds
for infinitely many t; the set of such t forms a union of arithmetic progressions. For
any integer t, denote its image in Z/d by t̄.
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Definition 4.3. Let Df,g = {t̄ ∈ Z/d | (3.9) holds for t}. So (f, g) is a DP if and
only if Df,g is not empty, and (f, g) is a SDP if and only if Df,g = Z/d.

Corollary 4.4. For t sufficiently large, Vf (Fqt ) = Vg(Fqt) if and only if t̄ ∈ Df,g.
For all t, large or small, t̄ ∈ Df,g implies Vf (Fqt) = Vg(Fqt).

The set Df,g is an example of a Frobenius set :

Definition 4.5. A Frobenius set (mod d) is a subset S of Z/d with the following
property. If a ∈ S, then so is ua where u is a unit in Z/d. Equivalently, if a, b
have the same order in Z/d, then a ∈ S if and only if b ∈ S. So S is completely
determined by the data (d,D), where D is the set of divisors of d representing the
orders in Z/d of the elements in S.

Call a subset A of N+ (or N or Z) a pure Frobenius progression if there exists a
Frobenius set S ⊆ Z/d so that a ∈ A if and only if ā ∈ S. Finally, call a subset A
of N+ a Frobenius progression if it differs from a pure Frobenius progression by only
a finite number of elements.

Remark 4.6. If (f, g) is a pair of polynomials, then Df,g is a Frobenius set. The
set of t satisfying (3.9) forms a pure Frobenius progression. Finally, the set of t
where Vf (Fqt) = Vg(Fqt) is a Frobenius progression (containing the associated pure
Frobenius progression).

For exceptional polynomials, the associated Frobenius set has additional struc-
ture: if d1 ∈ D where D is the set of divisors characterizing the Frobenius set, and k
is a positive integer such that kd1|d, then kd1 ∈ D. This follows from Corollary 3.7.
One consequence is that Df,T contains (Z/d)∗. In particular, 1 ∈ Df,T .

When we require Vf (Fqt ) = Vg(Fqt) with multiplicity, we also get Frobenius pro-
gressions. Later we discuss Frobenius progressions in the context of the reducibility
of f(T ) − g(S).

To prove reducibility, we use the following lemma, a basic application of the
Riemann Hypothesis.

Lemma 4.7. Suppose Φ(S, T ) ∈ Fq[S, T ] has At irreducible factors over Fqt [S, T ],
of which Nt are absolutely irreducible. Then Mt, the number of Fqt -points in the al-

gebraic set Φ(S, T ) = 0, is approximately Nt·qt. More precisely,
∣∣∣Mt

qt −Nt

∣∣∣ < cq−t/2

for some constant c which depends only on the total degree of Φ.

Proof. Factor Φ over Fqt [S, T ] as Φ1 · · ·ΦAt . Rearrange the factors so Φ1, . . . ,ΦNt

are absolutely irreducible. LetMi be the number of Fqt -points of the variety Φi = 0.
Bezout’s Theorem bounds |Mt − ΣMi|. For i > Nt, |Mi| is bounded (one can use
Bezout’s Theorem here as well). For i ≤ Nt let X̃i be the non-singular projective
curve corresponding to the affine curve Φi = 0. Let M̃i be the number of Fqt -points
on X̃i. Then |Mi−M̃i| is bounded. All of these bounds depend on the total degree
of Φ, and not qt. Finally, the Riemann Hypothesis bounds |M̃i − qt|, giving the
desired bound for |Mt −Nt · qt|.

Theorem 4.8. Suppose Vf (Fqt ) = Vg(Fqt ) for sufficiently large t. Let Nt be the
number of absolutely irreducible factors of f(T )− g(S) ∈ Fq [S, T ] defined over Fqt .
Then Nt ≥ 1. Furthermore, Nt = 1 if and only if Vf (Fqt ) = Fqt = Vg(Fqt ). (So
Nt = 1 implies f and g are both exceptional polynomials.)

Here, t sufficiently large means that qt is larger than an effectively computable
bound which depends only on deg f and deg g.



DAVENPORT PAIRS 11

Proof. Let Mt be the number of Fqt -points in the algebraic set f(T ) − g(S) = 0.
Vf (Fqt) = Vg(Fqt) implies that Mt ≥ qt. Thus Nt ≥ 1 by Lemma 4.7. If Vf (Fqt) =
Fqt , then Mt = qt, so Nt = 1.

Now suppose Vf (Fqt) �= Fqt . By Theorem 3.4 there is an A > 0 (independent
of t) with at least A · qt elements of Vf(Fqt ) having at least two elements of Fqt

mapping to it under f . This implies Mt ≥ qt · (A+ 1). Thus Nt > 1.

Remark 4.9. Let f, g ∈ F [T ]. Gauss’ Lemma implies that the factorization of
f(T ) − g(S) into irreducibles in F [S, T ] gives a factorization of f(T ) − g(yj) into
irreducibles in F (yj)[T ] (with all factors having positive T -degree). By basic Galois
theory, these irreducible factors of f(T )−g(yj ) over Fq(yj) correspond to the orbits
of {xi} under the action of Ĝf,g(yj).

Conclude that the F -irreducible factors of f(T )−g(S) correspond to the orbits of
{xi} under the action of Ĝf,g(yj). Further, if Φ is a factor associated with an orbit
O then |O| = degT Φ. Similar statements apply for the Ĝf,g(xi)-action on {yj}.

Remark 4.10. In the case f, g ∈ Fq [T ], let Gt be the subgroup of Ĝf,g generated by
elements of Ĝf,g,t ∪Gf,g. In other words, it is the subgroup generated by Gf,g and
an element lifting the qt-power Frobenius automorphism. Since Gt is canonically
isomorphic to the Galois group of Ωf,gFqt over Fqt(z), Remark 4.9 gives a natural
correspondence between divisors Φ ∈ Fqt [S, T ] of f(T )− g(S) (up to multiplication
by constants in F×

qt ) and subsets B ⊆ {yj} on which Gt(xi) acts. Also, the divisor Φ
is absolutely irreducible if and only if the corresponding subset B is an orbit under
the action of Gf,g(xi). A similar statement applies when reversing the roles of {yj}
vs. {xj} and S vs. T .

Remark 4.11. Suppose Φ ∈ Fqt [S, T ] is a divisor of f(T ) − g(S). Since Gt = Gd′

with d′ = gcd(d, t), the above shows that, up to multiplication by a non-zero
constant, Φ ∈ Fqd′ [S, T ].

The above theorem and the above remarks give the following:

Corollary 4.12. If (f, g) is a DP, and f is not exceptional, then f(T ) − g(S) is
reducible over Fq. In fact, if t̄ ∈ Df,g , then f(T ) − g(S) is reducible over Fqt .

Proof. The first statement is clear. The second statement is clear for t sufficiently
large, but the above remarks show that reducibility is not actually a property of t,
large or small, but a property of t mod d.

Remark 4.13. The t such that f(T )−g(S) is reducible over Fqt form a pure Frobe-
nius progression, with associated Frobenius set a subgroup of Z/d. Let (d,D) be
the data defining this Frobenius set, where D is a set of divisors of d. Then, in
contrast with the Frobenius set of an exceptional polynomial, if d1|d2 are divisors
of d, and d2 ∈ D, then d1 ∈ D.

Now we consider the analogous situation for inclusions Vf (Fqt ) ⊆ Vg(Fqt ).

Proposition 4.14. Let Vf (Fqt ) ⊆ Vg(Fqt ) for t sufficiently large, and let Nt be
the number of absolutely irreducible factors of f(T ) − g(S) defined over Fqt . Then
Nt ≥ 1. Furthermore, Nt = 1 if and only if g is bijective over Vf (Fqt ) in the
sense that every non-branch point b ∈ Vf (qt) has exactly one a ∈ Fqt mapping to it
under g.
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Proof. Let Gt be as in Remark 4.10. Also from this remark, the number Nt of
absolutely irreducible factors of f(T )−G(S) defined over Fqt equals the number of
Gt(x1)-orbits which are also Gf,g(x1)-orbits.

Use Lemma 3.1 to count such orbits. Conclude thatNt = r where r is the average
number of elements of {yj} fixed by σ, as σ varies in Ĝf,g,t(x1). By Theorem 3.10,
r ≥ 1, and r = 1 if and only if every σ ∈ Ĝf,g,t fixing x1 fixes exactly one element
of {yj}. So, by the Frobenius Principle and the Chebotarev Density Theorem,
r = 1 is equivalent to every non-branch point b ∈ Vf (Fqt) being the image of
exactly one a ∈ Fqt under the map induced by g.

Remark 4.15. The above generalizes Theorem 4.8 since, if Vf(Fqt ) = Vg(Fqt ), bi-
jectivity of f over Vf(Fqt ) is equivalent to Vf (Fqt ) = Fqt (use Theorem 3.4). In
fact, we may view the above proof as an alternate proof of Theorem 4.8.

We end with a generalization of Theorem 3.13.

Proposition 4.16. If Vf (Fqt ) ⊆ Vg(Fqt ) for all t, and deg g > 1, then f(T )−g(S)
is reducible over Fq.

Proof. By Remark 4.9, the number of factors of f(T ) − g(S) is the number of
Ĝf,g(x1)-orbits of {yj}. By (3.10), each element of Ĝf,g(x1) fixes at least one
element of {yj}. If {yj} has only one Ĝf,g(x1)-orbit, then Ĝf,g(x1, yj), as yj varies,
are conjugate subgroups of Ĝf,g(x1). The conjugates, however, of a proper subgroup
of a finite group cannot cover the group.

Remark 4.17. The topic of reducibility will be continued in Section 7.

5. Behavior at Infinity

Many results above generalize to non-polynomial maps. However, polynomial
maps have special properties that yield stronger results. For example, polynomial
maps f : P1 → P1 are totally ramified above at least one place of P1, namely the
place at infinity. In this section we study the consequences of total ramification.

We begin with a lemma concerning the special case of tame ramification. It is
similar to results in the literature (for example [Mül98, Section 2.2]). However,
due to the absence of a convenient reference in the needed generality and for the
convenience of the reader, we give a proof.

Lemma 5.1. Let K be a field with discrete valuation v and associated residue
field k. Let L be a degree n separable extension of K with valuation w extending
v to L. Let M be the normal closure of L over K, and let ω be a valuation of
M extending w with residue field k(ω). Let G = Gal(M/K) and H = Gal(M/L).
Suppose (L, w) is tamely and totally ramified over (K, v). Then

(5.1) (M,ω) is tamely ramified over (K, v) and unramified over (L, w).
(5.2) The inertia group Iω ⊆ G is cyclic and acts transitively and effectively

on G/H, and any generator of Iω corresponds to an n-cycle in Perm(G/H).
(5.3) k(ω) = k(ζn) where ζn is a primitive nth root of unity.
(5.4) The decomposition group Gω ⊆ G is isomorphic to the semidirect prod-

uct µn �ϕ G̃ where µn ⊆ k(ω)× is the group of nth roots of unity, G̃ is
Gal(k(ω)/k), and ϕ : G̃ → Aut(µn) is the natural Galois action on the nth
roots of unity.
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(5.5) The isomorphism Gω → µn �ϕ G̃ can be chosen so that the inertia group
Iω corresponds to µn, and H ∩Gω corresponds to G̃.

Proof. Let π = πL be a uniformizer for (L, w), and let h1 ∈ K[T ] be its minimal,
monic polynomial. This polynomial is Eisenstein of degree n (its non-leading coef-
ficients have positive valuation, and its constant term is a uniformizer for (K, v)).

Since (L, w) is totally ramified over (K, v), Iω acts transitively on G/H . The
action is effective (G acts effectively on G/H). The property of tame ramification
behaves well under composita, and (L, w) is tamely ramified over (K, v). Thus
(M,ω) is also tamely ramified over (K, v). So Iω is cyclic. It acts transitively
and effectively on G/H , so its generator acts as an n-cycle. In particular |Iω| =
|G/H | = n, forcing (M,ω) to be unramified over (L, w).

Let Kv, Lw, and Mω be the completions associated with (K, v), (L, w), and
(M,ω). So Gω is canonically isomorphic to Gal(Mω/Kv). Since h1 remains irre-
ducible over Kv, Lw = Kv(π) and Mω is the splitting field of h1 over Kv. Let
h2(T ) = Tn − πK where πK = −h1(0). Note that πK is a uniformizer for Kv. Let
M ′ be the splitting field of h2 over Kv. We show that Mω =M ′.

Let β ∈ M ′ be a root of h2, and ζ ∈ M ′ a primitive nth root of unity. Note that
h3(T )

def= h1(βT )/πK is a monic polynomial in M ′ with coefficients of non-negative
valuation. By Hensel’s lemma, all the roots r1, . . . , rn of h3 are in M ′. Thus {riβ},
the roots of h1, are in M ′. Conclude Mω ⊆ M ′.

The roots of h1 correspond to the roots of h2 as follows. If α is a root of h1,
then expand α inM ′ in terms of the uniformizer β as α = ζiβ+higher order terms.
The correspondence sends α to ζiβ. This correspondence is compatible with the
Gal(M ′/Kv) action. Conclude that Mω =M ′.

Clearly Iω = Gal(Mω/Kv(ζ)), and so Gal(Kv(ζ)/Kv) is canonically isomorphic
to G̃ = Gal(k(ω)/k). Conclude that k(ω) = k(ζn).

Replace β by βζi, if necessary, so that π corresponds to β. So Hω = H∩Gω is the
subgroup of Gω fixing β, and Lw = Kv(β). Clearly Hω ∩ Iω = 1, and |Hω| = |G̃|.
So, restricting the natural homomorphism Gω → G̃ gives an isomorphism Hω → G̃.
The inverse isomorphism splits the exact sequence

1 → Iω → Gω → G̃ → 1.

Thus Gω is isomorphic to a semi-direct product Iω � G̃ with an isomorphism which
sends Hω to G̃.

The rule γ �→ γ(β)/β defines a natural isomorphism Iω → µn ([Frö67, Section 8]),
where a �→ ā is the residue map. If γ �→ ζin, then clearly σγσ−1 �→ σ̃(ζin) where σ̃
is the image of σ in G̃. The result follows.

Example 5.2. Let f ∈ F [T ] be a polynomial of degree prime to the characteristic
of F . Then the hypotheses of Lemma 5.1 are satisfied in the following situation.

K = F (z) with v =∞z, the place at infinity. (So k = F ).
L = F (x1) with w = ∞x1. (Here, x1 is a fixed root of f(T ) − z).
M = Ωf with ω any place above ∞x1 .
G = Ĝf , and H is the subgroup fixing x1.
Note that we can identify the roots {x1, . . . , xn} with G/H where a given root xj

corresponds to the coset of elements sending x1 to xj.

Applying the Lemma 5.1 to the above example gives the following.
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Corollary 5.3. Suppose n = deg f is prime to the characteristic of F . Let ζn ∈ F
be a primitive nth root of unity, and µn ∈ F× the group of all nth roots of unity.

1. The geometric monodromy group Gf contains an element which acts on {xi}
as an n-cycle.

2. The field F̂f is a subfield of F (ζn). In particular, if F = Fq and q ≡ 1 mod n,
then F̂f = Fq and Ĝf = Gf .

3. The arithmetic monodromy group Ĝf contains a subgroup isomorphic to
µn �Gal(F (µn)/F ), and the geometric monodromy group Gf contains a subgroup
isomorphic to µn � Gal(F (µn)/F̂f).

We now give the main theorem of this section. Here Df,g ⊆ Z/d is as in Defini-
tion 4.3 and d = [F̂f,g : Fq ].

Theorem 5.4. Let f, g ∈ Fq [T ] with n = deg f and m = deg g. If (f, g) is a DP,
then gcd(n, qt − 1) = gcd(m, qt − 1) for all positive t with t̄ ∈ Df,g .

Proof. Let t be a positive integer with t̄ ∈ Df,g . Write n = n0p
u and m = m0p

v

where n0 and m0 are prime to p, the characteristic of Fq . We need to show
that gcd(n0, qt − 1) = gcd(m0, q

t − 1).
Let∞z be the infinite place of Fq(z), and let K be the completion. Fix a place ω

of Ωf,g above ∞z. Let Ĝω ⊆ Ĝf,g be the decomposition group associated to ω,
and I ⊆ Ĝω the inertia group. Thus Ĝω is canonically isomorphic to Gal(Ωω/K)
where Ωω is the completion of Ωf,g at ω. Choose an element φt ∈ Ĝω which induces
the automorphism x �→ xq

t

of the residue field. Since Fq(x1) is totally ramified over
Fq(z) at ∞z, the group I acts transitively on {xi}. So, after replacing φt by σφt
for a suitable σ ∈ I, we can assume that φt fixes x1. Note: φt ∈ Ĝf,g,t(x1), so φt
must also fix an element of {yj}.

Let I1 ⊆ I be the first higher ramification group. Thus I1 is a normal p-Sylow
subgroup of I with cyclic quotient. Let γ ∈ I be an element whose image in I/I1
is a generator.

Let Rx be Ĝω/I1Ĝω(x1), and consider the map {xi} → Rx sending xi to the
coset σI1Ĝω(x1) where σ ∈ Ĝω is chosen so that σ(x1) = xi. The fibers of this map
are exactly the I1 orbits of {xi}. Since I1 is normal in I and I acts transitively
on {xi}, the I1 orbits all have the same size, that size is a power of p, and the
number of I1 orbits is prime to p. Since n = |{xi}| is the product of |Rx| and the
fiber size, it follows that Rx has n0 elements, and the fibers have size pu. Likewise,
let Ry be Ĝω/I1Ĝω(y1), and consider the corresponding map {yj} → Ry. Conclude
that |Ry| = m0 and that the fibers have size pv.

Let Lx ⊆ Ωω be the fixed field of I1Ĝω(x1), and Ly the fixed field of I1Ĝω(y1).
Let Mx ⊆ Ωω be the normal closure of Lx over K, and My the normal closure
of Ly over K. We can identify Rx with Gal(Mx/K)/Gal(Mx/Lx). Conclude that
[Lx : K] = n0. Since I acts transitively on Rx, Lx/K is totally and tamely ramified.
A similar conclusion holds for Ly/K.

Apply Lemma 5.1 to Lx/K and Ly/K. For example, we can identify Rx with
Z/n0 so that φt fixes 0 ∈ Z/n0 and γ acts as the map c �→ c + 1. Consequently,
γbφt acts on Z/n0 as the map c �→ qtc + b. Identify Ry with Z/m0 in a similar
manner.

Now suppose a = gcd(qt−1, n0) is not a multiple of gcd(qt−1, m0). Then γaφt,
viewed as c �→ qtc + a modulo n0, clearly fixes an element of Rx. However, γaφt,
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viewed as c �→ qtc+a modulom0, fixes no element of Ry. Let ρ ∈ Rx be an element
fixed by γaφt, and let xi0 be an element of the fiber of {xi} → Rx. Since fibers
of this map are I1 orbits, there is a τ ∈ I1 such that τγaφt fixes xi0 . However,
τγaφt and γaφt act on Ry in the same way. So neither has a fixed point in Ry.
Thus, τγaφt fixes no element of {yj}, contradicting t̄ ∈ Df,g. Conclude that a is a
multiple of gcd(qt − 1, m).

Similarly, conclude that gcd(qt−1, m0) is a multiple of gcd(qt−1, n0). Therefore,
gcd(qt − 1, m0) = gcd(qt − 1, n0).

Remark 5.5. Although we have adopted the convention that polynomials in this
paper have non-zero derivatives, the above theorem (and its corollaries) remain
valid for polynomials with zero derivatives.

A corollary is Lenstra’s theorem [CF95]:

Corollary 5.6. Let f ∈ Fq [T ] with n = deg f. If f is an exceptional polynomial,
then gcd(n, q − 1) = 1.

Proof. Apply the theorem to (f, g) where g(T ) = T . Take t = 1 and recall that
1 ∈ Df,g since f is exceptional.

Corollary 5.7. Let f, g ∈ Fq[T ] where deg f = n0p
u and deg g = m0p

v with n0
and m0 prime to the characteristic p. If (f, g) is a SDP then n0 =m0.

Proof. Let t be the order of q modulo n0m0. Thus n0m0 | qt − 1. By Theorem 5.4,

n0 = gcd(qt − 1, deg f) = gcd(qt − 1, deg g) =m0.

The above Theorem and Corollary easily generalize to the case of value set
inclusions:

Proposition 5.8. Let f, g ∈ Fq [T ] where deg f = n and deg g = m. For all t such
that (3.10) holds, gcd(qt − 1, m) divides gcd(qt − 1, n).

Proposition 5.9. Let f, g ∈ Fq [T ] where deg f = n0p
u and deg g = m0p

v with
n0 and m0 prime to the characteristic p. If Vf (Fqt ) ⊆ Vg(Fqt ) for all t, then m0

divides n0.

6. Induced Decompositions

In this section we review properties of induced decompositions. Most of the
results are found in or are extensions of results in [Fri73].

Lemma 6.1. Let f, g ∈ F [T ] be a pair of polynomials. There is a decomposition
f = f1 ◦ f2 with f1, f2 ∈ F [T ] having the following properties:

(6.1) F (xi) ∩ Ωg = F (f2(xi)) for all xi in {x1, . . . , xn}.
(6.2) deg f2 = 1 if and only if Ωf ⊆ Ωg.
(6.3) For all xi, f2(T )− f2(xi) is an irreducible polynomial over Ωg.

Furthermore, the above properties characterize f1 and f2 up to composition with
linear polynomials (actually (6.1) suffices). More specifically, if f = f1 ◦f2 = f ′1 ◦f ′2
are two such decompositions, then f ′1 = f1 ◦ l−1 and f ′2 = l ◦ f2 where l ∈ F [T ] is a
linear polynomial.

Call this decomposition and the analogous decomposition of g the induced de-
compositions associated to the pair (f, g).
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Proof. Fix a particular root xi. By Lüroth’s Theorem, F (xi)∩Ωg = F (wi) for some
wi ∈ F (xi). Adjust the choice of wi by a suitable linear fractional transformation
so that wi = f2(xi) and z = f1(wi) for some f1, f2 ∈ F [T ]. Thus f = f1 ◦ f2.
Any other choice w′

i has the form awi + b where a, b ∈ F , a �= 0. So f1 and f2 are
unique up to composition with a linear polynomial. Now let xj be any element of
{x1, . . . , xn} and let σ ∈ Ĝf,g send xi to xj. Then F (xj) ∩ Ωg = F (σ(xi)) ∩ Ωg =
F (f2(σ(xi))) = F (f2(xj)). So (6.1) holds.

To see (6.2), note that deg f2 = 1 implies F (xi)∩Ωg = F (xi). Thus F (xi) ⊆ Ωg ,
so Ωf ⊆ Ωg. The converse is clear.

To see (6.3), consider f2(T ) − f2(xi). By (6.1), this polynomial is defined
over Ωg. We will show it is irreducible by showing that Gal(Ωg/Ωg) acts tran-
sitively on its roots. Any root equals some xj satisfying f2(xi) = f2(xj). Let
σ ∈ Gal

(
F (z)/F (z)

)
satisfy σ(xi) = xj. Let σ̃ be the restriction of σ to Ωg .

Clearly, σ̃(f2(xi)) = f2(xi), so σ̃ ∈ Gal(Ωg/Ωg ∩ F (xi)). The restriction map

Gal (F (xi) · Ωg/F (xi)) → Gal (Ωg/Ωg ∩ F (xi))

is an isomorphism. Use this to lift σ̃ to F (xi) · Ωg , and then to Ωg so the lifting τ
fixes xi. Then σ ◦ τ−1 ∈ Gal(Ωg/Ωg) and σ ◦ τ−1(xi) = σ(xi) = xj .

An important feature of these induced decompositions is that they respect the
factorization of f(T ) − g(S).

Lemma 6.2. Suppose f(T ) − g(S) is reducible over F , and let f = f1 ◦ f2 be the
induced decomposition. Then f1(T ) − g(S) is reducible over F . Moreover, substi-
tuting f2(T ) for T into the factorization of f1(T )− g(S) gives the factorization of
f(T ) − g(S). In particular, deg f1 > 1.

Proof. Fix xi. As in Remark 4.9, factoring g(S)−f(T ) over F [S, T ] corresponds to
finding the orbits of {yj} under the action of Gxi

def= Gal
(
F (z)/F (xi)

)
. Similarly,

factoring g(S) − f1(T ) over F [S, T ] corresponds to finding the orbits of {yj} under
the action of Gf2(xi)

def= Gal
(
F (z)/F (f2(xi))

)
.

Decompose {yj} into orbits with both groups. Clearly the Gf2(xi)-orbits contain
the Gxi-orbits. We show, in fact, they are equal. Let σ ∈ Gf2(xi) send yj to yk. If
σ sends xi to xl, then xi and xl are both roots of f2(T )− f2(xi). By (6.3), there is
a τ ∈ Gal

(
F (z)/Ωg

)
sending xi to xl. Thus τ−1 ◦ σ ∈ Gxi sends yj to yk.

Let O ⊆ {yj} be such an orbit, Φ(S, T ) the corresponding irreducible factor
of g(S) − f1(T ), and Φ′(S, T ) the corresponding irreducible factor of g(S) − f(T ).
The correspondence of Remark 4.9 yields the equation∏

yj∈O
(S − yj) = cΦ(S, xi) = c′Φ′(S, f2(xi))

for some c, c′ ∈ F . Thus cΦ(S, T ) = c′ Φ′(S, f2(T )).

Corollary 6.3 ([Fri73], Lemma 7). Suppose f(T )−g(S) is reducible over F . Then
there are decompositions f = f ′ ◦ f ′′ and g = g′ ◦ g′′ with f ′, f ′′, g′, g′′ ∈ F [T ] such
that (i) f ′(T ) − g′(S) is reducible, (ii) Ωf ′ = Ωg′ , and (iii) substituting f ′′(T ) for
T and g′′(S) for S into the factorization of f ′(T )−g′(S) gives the the factorization
of f(T ) − g(S).

Furthermore, if either deg f ′ or deg g′ is prime to p, then deg f ′ = deg g′.
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Proof. To prove this, repeatedly use the previous lemma applied to induced decom-
positions of f and g. (Replace f and g with the outer composites as you go along).
Eventually you will obtain f2 and g2 of degree 1 which implies that Ωf = Ωg .

Now if deg f ′ or deg g′ is prime to p, then the place at infinity is tamely ramified
in Ωf ′ = Ωg′ . Conclude that both deg f ′ and deg g′ give the order of the inertia
group at infinity, so they are equal. (See Lemma 5.1 above).

Now we show that induced decompositions behave well in certain types of value
set situations. Since we are dealing with value sets, we restrict to F = Fq for the
remainder of this section.

Proposition 6.4. Suppose Vf (Fqt ) ⊆ Vg(Fqt) for all t. Let f = f1 ◦ f2 be the
induced decomposition associated to the pair (f, g) and let g = g1 ◦ g2 be any de-
composition (for example, the induced decomposition). Then Vf1 (Fqt ) ⊆ Vg1(Fqt )
for all t.

Proof. All roots of f1(T ) − z have the form f2(xi). By Theorem 3.10, we can
show Vf1 (Fqt ) ⊆ Vg(Fqt ) for all t by showing that any σ ∈ Gal(Fq(z)/Fq(z)) which
fixes f2(xi) must also fix some yj. If σ ∈ Gal(Fq(z)/Fq(z)) fixes f2(xi), then
xl = σ(xi) is a root of f2(T ) − f2(xi). By (6.3), there is a τ ∈ Gal

(
Fq(z)/Ωg

)
sending xl to xi. So τ ◦ σ fixes xi, and by hypothesis and Theorem 3.10, it must
fix some yj. Since τ fixes yj , conclude σ also fixes yj .

Clearly, Vg(Fqt) ⊆ Vg1 (Fqt).

Corollary 6.5. Suppose (f, g) is a SDP with deg g > 1, so (as in Proposition 4.16)
f(T ) − g(S) is reducible. Then the decompositions of Corollary 6.3 can be chosen
so that (f ′, g′) is a SDP.

Suppose, instead, Vf (Fqt ) ⊆ Vg(Fqt ) for all t. Then the decompositions of Corol-
lary 6.3 can be chosen so that Vf ′ (Fqt ) ⊆ Vg′ (Fqt ) for all t.

Proposition 6.6. Suppose (f, g) is a SDP with n = deg f and m = deg g prime
to p. Then Ωf = Ωg.

Proof. By Corollary 5.9, n = m. Let f = f1 ◦ f2 be the induced decomposition
associated to the pair (f, g). By Proposition 6.4, (f1, g) is also a SDP. By Corol-
lary 5.9 again, deg f1 = m. Hence, deg f2 = 1. Thus, by (6.2), Ωf ⊆ Ωg. A similar
argument gives the other inclusion.

Finally, we show that in some circumstances the induced decompositions behave
well for DP’s.

Proposition 6.7. Suppose (f, g) is a DP with F̂f,g = F̂g. Let f = f1 ◦ f2 be the
induced decomposition associated to the pair (f, g). Then (f1, g) is a DP. Further-
more, Df,g ⊆ Df1,g, both being subsets of Z/d where d = [F̂g : Fq ].

Proof. We need to verify (3.9) with (f1, g) for all t such that t̄ ∈ Df,g (Defini-
tion 4.3). So, let σ ∈ Ĝf1,g,t where t̄ ∈ Df,g, and let σ̃ ∈ Ĝf,g,t be a element
restricting to σ. Note that the roots of f1(T )− z have the form f2(xi).

First, suppose σ fixes yj . So σ̃ fixes yj , and, by property (3.9), σ̃ fixes some xi.
Thus σ̃, and hence σ, fix f2(xi).

Now suppose σ fixes f2(xi). Let xl = σ̃(xi) (so xl is a root of f2(T ) − f2(xi)).
By (6.3) there is a τ ∈ Gal(Ωf,g/Ωg) sending xi to xl. Since τ fixes Ωg, it also
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fixes F̂g = F̂f,g . Hence τ−1 ◦ σ̃ ∈ Ĝf,g,t(xi). Since t̄ ∈ Df,g , property (3.9) applies,
and τ−1 ◦ σ̃ must fix some yj . Since τ fixes yj ∈ Ωg, conclude σ also fixes yj .

Remark 6.8. An analogous result holds for inclusions.

7. Reducibility and Representations

This section links the reducibility of f(T ) − g(S) to the behaviour of the asso-
ciated Galois representations. It builds on the characteristic zero results of [Fri73]
and the positive characteristic results of [Fri99].

7.1. Group Theory Lemmas. Let G be a finite group acting on a finite set S =
{si} with N elements. This permutation action of G has an associated linear action
of G on a complex vector space VS as follows. Let VS be an N -dimensional complex
vector space with a chosen basis (si). Have σ ∈ G act on VS by the unique linear
transformation that sends si1 to si2 if and only if σ (acting on S) sends si1 to si2 .

Let χS be the character of the action of G on VS . The following lemma, a special
case of Lemma 3.1, is easy and well-known.

Lemma 7.1. For all σ ∈ G, the value of the character χS(σ) is the number of
elements of S fixed by σ. Furthermore,

< χS , 1 > =
1
|G|

∑
σ∈G

χS(σ) = number of orbits in S .

Here we use the standard Hermitian inner product on the vector space C|G| of
functions from G to C:

< f1, f2 >
def=

1
|G|

∑
σ∈G

f1(σ)f2(σ).

The irreducible characters form an orthogonal basis.
The C[G]-module VS decomposes as 111S ⊕ V ′

S where 111S is the submodule gener-
ated by

∑
i si and where V ′

S is the kernel of the augmentation map η : VS → C,∑
i λisi �→

∑
λi. Let χ′

S be the character associated to V ′
S . In particular, χS =

1 + χ′
S .

Lemma 7.2. If G acts transitively on S, then 111S consists of all elements of VS
fixed by G. Furthermore < 1, χ′

S >= 0, and so < χ′
S , χ

′
S > = < χS , χS > − 1.

Proof. The identity character appears exactly once in the permutation representa-
tion of each orbit of G acting on S. So, transitivity means that 111 doesn’t appear
in χ′

S . Apply the inner product of 111 + χ′
S to itself to get the given relation.

Remark 7.3. In general, < χ′
S , χ

′
S > = < χS , χS > − (2r − 1) where r is the

number of orbits in S.

Now let the finite group G act transitively on two finite sets A and B. Consider
also the associated G-action on A × B. The following easy lemma is the starting
point for our analysis of reducibility.

Lemma 7.4. The number of orbits of the product A×B under the action of G is
equal to < χA, χB >.
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Proof. The character χA×B associated to the action of G on A×B is just χA ·χB .
By Lemma 7.1, the number of orbits in A× B is

1
|G|

∑
σ∈G

χA×B(σ) =
1
|G|

∑
σ∈G

χA(σ)χB(σ) = < χA, χB > .

(Note: this proof does not require the transitivity assumption).

The following well-known characterization of double transitivity is an immediate
consequence of the above results.

Corollary 7.5. Suppose the action of G on S is transitive where |S| ≥ 2. Then
the following are equivalent:

(7.1) The action of G on S is doubly transitive.
(7.2) There are exactly two orbits in S × S under the action of G.
(7.3) < χS , χS >= 2.
(7.4) < χ′

S , χ
′
S >= 1.

(7.5) V ′
S is an irreducible C[G]-module.

Remark 7.6. In this corollary, we can replace they hypothesis that G acts transi-
tively on S with the alternate hypothesis |S| > 2.

The following is also an easy consequence of Lemma 7.4.

Lemma 7.7. If G acts doubly transitively on A and |A| ≥ 2, then the multiplicity
of V ′

A in the decomposition of V ′
B is one less than the number of G-orbits of A×B.

Corollary 7.8. Suppose |A| ≥ 2 and G acts doubly transitively on A. Suppose also
that |A| = |B|. Then the following are equivalent:

(7.6) χA = χB .
(7.7) A× B has more than one orbit.
(7.8) A× B has exactly two orbits.
(7.9) VA and VB are isomorphic as C[G]-modules.

Remark 7.9. Note that if (7.6) (or its equivalents) hold, then G must act doubly
transitively on B as well (by Corollary 7.5).

We refine (7.9) above by explicitly constructing a natural isomorphism from VA
to VB when (i) G acts doubly transitively on A, (ii) |A| = |B|, and (iii) A × B
has more than one orbit. We first define natural maps VA → VB without using
these three hypotheses, and then show that when the hypotheses hold, one gets an
isomorphism.

First choose a G-invariant subset Γ of A×B, for example a G-orbit. For conve-
nience, label elements: A = {ai}, B = {bj}. Consider the matrix E = [εi,j] where
εi,j is 1 if (ai, bj) ∈ Γ, and 0 otherwise. Consider the linear map ψ : VA → VB
defined by the matrix E:

ψ(ai)
def=

∑
j

εi,jbj, so ψ

(∑
i

λiai

)
=
∑
j

(∑
i

λiεi,j

)
bj.

Here and below, (ai) is the basis of VA associated to A = {ai}, and (bj) is the basis
of VB associated to B = {bj}.

The following lemma follows directly from the definition (and does not depend
on transitivity).



20 W. AITKEN, M. FRIED, L. HOLT

Lemma 7.10. The map ψ : VA → VB is a C[G]-module morphism.

Now we investigate some of the consequences of transitivity.

Lemma 7.11. If Γ is nonempty, then restricting ψ to 111A gives an isomorphism
111A → 111B of C[G]-modules.

Proof. Check that ψ sends
∑

i ai to C
∑

j bj where, for each bj, C = Cj is the
number of ai ∈ A with the property that (ai, bj) ∈ Γ. (Cj is independent of j by
transitivity).

Lemma 7.12. Restricting ψ to V ′
A gives a C[G]-module morphism ψ′ : V ′

A → V ′
B .

Proof. Check that ηB ◦ ψ = D · ηA where ηA and ηB are the augmentation maps,
and, for each ai, D = Di is the number of bj ∈ B with the property that (ai, bj) ∈ Γ.
(Di is independent of i by transitivity).

Lemma 7.13. If Γ ⊆ A × B is not empty, nor all of A × B, then ψ′ : V ′
A → V ′

B

(defined above) has non-trivial image.

Proof. Fix a basis vector ai of VA. Since Γ is non-empty, εi,j1 = 1 for some j1.
Since Γ is a proper subset of A×B, εi,j2 = 0 for some j2. Let σ ∈ G be an element
such that σ(bj1 ) = bj2 . Then ψ′(σ(ai)− ai) �= 0.

Lemma 7.14. Suppose that G acts doubly transitively on A, and that Γ is not
empty nor all of A× B. Then ψ : VA → VB is injective.

Proof. By Corollary 7.5, V ′
A is irreducible, and by the previous lemma, the map

ψ′ : V ′
A → V ′

B is not trivial. Thus ψ′ is injective. By Lemma 7.11, the map 111A → 111B
induced by ψ is an isomorphism. Thus ψ : 111A ⊕ V ′

A → 111B ⊕ V ′
B is injective.

Proposition 7.15. Suppose that (i) G acts doubly transitively on A, (ii) |A| = |B|,
and (iii) Γ is a non-empty proper subset of A×B invariant under the action of G.
Then ψ : VA → VB is an isomorphism.

Proof. By the previous lemma, ψ is injective. Since VA and VB have the same
dimension, ψ is an isomorphism.

Also of interest is the following ([Fri73, Lemma 2]).

Lemma 7.16. Suppose G acts doubly transitively on A, and |A| = |B| ≥ 2. Sup-
pose also that, for all σ ∈ G, χA(σ) > 0 if and only if χB(σ) > 0. Then χA = χB.

Proof. Recall χ′
A = χA − 1 and χ′

B = χB − 1. By hypothesis, for all σ ∈ G,
χ′
A(σ) < 0 if and only if χ′

B(σ) < 0. If σ = 1 then χ′
A(σ) > 0 and χ′

B(σ) > 0. Thus

< χA, χB > = < χ′
A, χ

′
B > + 1 ≥ 2.

The result follows from Lemma 7.4 and Corollary 7.8.

Remark 7.17. This shows that if (f, g) is a SDP and if Ĝf acts doubly transitively
on {xi}, then (f, g) is actually a SDP with multiplicity. (This can also be seen as
a corollary of Proposition 7.26 and Theorem 3.13).

Remark 7.18. In the above lemma, we can replace the hypothesis that for all σ ∈ G,
χA(σ) > 0 if and only if χB(σ) > 0 with the hypothesis that for all σ ∈ G,
χA(σ) ≤ 1 if and only if χB(σ) ≤ 1.
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Finally, we describe one more consequence of double transitivity which will be
useful later.

Lemma 7.19. Let Γ be an orbit of A×B where, as above, G acts transitively on A
and B. Suppose also that G acts doubly transitively on A where |A| ≥ 2. Then

|A||B|(|A| − 1) | |Γ|(|Γ| − |B|).

Proof. For b ∈ B, let Γb
def= {a|(a, b) ∈ Γ}. Note, k def= |Γb| is independent of b ∈ B

since G acts transitively on B.
Now consider the set

Γ′ = {(a, a′, b) | (a, b), (a′, b) ∈ Γ, and a �= a′ }.

For distinct elements a, a′ of A, let Γ′
a,a′

def= {b|(a, a′, b) ∈ Γ′}. Note, l def= |Γ′
a,a′| is

independent of a and a′ since G acts doubly transitively on A.
We count the number of element of Γ′ in two ways:

|Γ′| = |A|(|A| − 1)l = |B|k(k − 1)

Now multiply both sides by |B| and use the equation k|B| = |Γ|.

7.2. Reducibility. In this section, unless otherwise stated, F is a general field
and f, g ∈ F [T ]. Remark 4.9 describes the factorization of f(T ) − g(S) in F [S, T ]
in terms of Ĝf,g(yj)-orbits of {xi}. However, there is another natural description
of the factorization of f(T ) − g(S) in F [S, T ] whose validity follows immediately
from Remark 4.9:

Proposition 7.20. Consider the action of Ĝf,g on {xi} × {yj} induced by the
natural actions of Ĝf,g on {xi} and {yj}. The irreducible factors of f(T )−g(S) in
F [S, T ] naturally correspond to the orbits of {xi}×{yj}. This correspondence sends
an irreducible factor Φ of f(T ) − g(S) to the orbit consisting of all pairs (xi, yj)
satisfying Φ(xi, yj) = 0 in Ωf,g .

Let O ⊆ {xi} × {yj} be such an orbit, and let Φ ∈ F [S, T ] be the corresponding
factor of f(T ) − g(S). Then

|O| = deg f · degS Φ = deg g · degT Φ.

Corollary 7.21. The number of irreducible factors of f(T ) − g(S) in F [S, T ] is
bounded by w = gcd(deg f, deg g). In fact, the T -degree of any irreducible factor
of f(T ) − g(S) is a multiple of (deg f)/w, and the S-degree of any such factor is a
multiple of (deg g)/w.

Remark 7.22. The above corollary generalizes the well-known result of Ehrenfeucht
that gcd(deg f, deg g) = 1 implies f(T ) − g(S) is irreducible.

Corollary 7.23. Let Φ be an irreducible divisor of f(T )−g(S) in the ring F [S, T ].
If deg f = deg g, then

deg Φ = degT Φ = degS Φ
where the first of these is is the total degree of Φ.

Now consider the special case F = Fq . Factoring f(T )−g(S) over Fq amounts to
describing the orbits of {xi} × {yj} under the action of the arithmetic monodromy
group Ĝf,g, and factoring f(T ) − g(S) over Fq amounts to describing the orbits of
{xi} × {yj} under the action of the geometric mondromy group Gf,g (to see the
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latter, use the canonical isomorphism between Gal
(
Ωf,gFq/Fq(T )

)
and Gf,g , and

then apply Proposition 7.20 with F = Fq).
In what follows, let d = [F̂f,g : Fq ].

Proposition 7.24. Let Φ be an irreducible factor of f(T )−g(S) over Fq[S, T ], and
let (xi0 , yj0) be in the corresponding orbit under Gf,g. Then a non-zero constant
multiple of Φ is defined over Fqt if and only if t̄ is in the subgroup of Z/d generated
by the image of Ĝf,g(xi0 , yj0) under Ĝf,g → Z/d.

Proof. Let Gt consist of the elements in Ĝf,g whose image in Z/d is in the subgroup
generated by t̄. Note: Gt is isomorphic to Gal (FqtΩf,g/Fqt (T )) and the action
on {xi} and {yj} are preserved by this isomorphism. Thus, by Proposition 7.20,
irreducible factors of f(T )−g(S) in Fqt [S, T ] correspond to Gt-orbits of {xi}×{yj}.

Let Φ′ ∈ Fqt [S, T ] be the irreducible factor corresponding to the Gt-orbit con-
taining (xi0 , yj0). The nature of the correspondence in Proposition 7.20 implies
that Φ divides Φ′ in Fq[S, T ]. The degrees of Φ and Φ′ are determined by the sizes
of the associated orbits, so Φ′ is a non-zero constant multiple of Φ if and only if
these orbits are the same size. This in turn is equivalent to the following:

|Gt|
|Gt(xi0 , yj0)|

=
|Gf,g|

|Gf,g(xi0 , yj0)|
, or equivalently

d

a
=

|Gt|
|Gf,g|

=
|Gt(xi0 , yj0)|
|Gf,g(xi0 , yj0)|

where a = gcd(d, t). The ratio |Gt(xi0 , yj0)|/|Gf,g(xi0 , yj0)| determines the image
of Gt(xi0 , yj0) in Z/d, and the above equation holds if and only if this image is the
subgroup generated by t̄. Finally, this occurs if and only if the image of Ĝf,g(xi0 , yj0)
in Z/d contains t̄.

We return to the case of general field F . Let Vf and Vg be the C[Ĝf,g]-modules
associated to the action of Ĝf,g on {xi} and {yj} respectively. Let χf and χg be
the associated characters. Lemma 7.4 and Proposition 7.20 give the following.

Proposition 7.25. The number of irreducible factors of f(T )− g(S) in F [S, T ] is
equal to < χf , χg >.

Corollary 7.8 and Proposition 7.20 give the following.

Proposition 7.26. Suppose that the degrees of f and g are equal and greater than
one, and that the action of Ĝf,g on {xi} is doubly transitive. Then the following
are equivalent.
(7.10) χf = χg.
(7.11) f(T ) − g(S) is reducible in F [S, T ].
(7.12) f(T ) − g(S) factors into exactly two irreducible factors in F [S, T ].
(7.13) Vf and Vg are isomorphic as C[Ĝf,g]-modules.

We note that if F = Fq and χf = χg , then Corollary 3.12 (together with the
observation in Lemma 7.1) implies that (f, g) is a SDP. Thus we get the following.

Corollary 7.27. Let F = Fq. Suppose (i) the degrees of f and g are equal,
(ii) the action of Ĝf,g on {xi} is doubly transitive, and (iii) f(T ) − g(S) is re-
ducible in Fq[S, T ]. Then (f, g) is a SDP with multiplicity.

We can also use Proposition 7.26 to prove the following:
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Lemma 7.28. Suppose f, g ∈ F [T ] are polynomials of degree at least three which
are linearly related on the inside over the separable closure F sep. Suppose also that
the action of Ĝf,g on {xi} is doubly transitive. Then f and g are linearly related
on the inside over F .

Proof. Let E be a finite Galois extension of F over which f and g are linearly related
on the inside. This implies that f(T ) − g(S) has a linear factor defined over E.
Proposition 7.26 implies f(T )− g(S) has exactly two factors defined over E, one of
which is linear and so the other must be of total degree greater than 1. Hence the
factors are invariant under the natural Gal(E/F ) action. Since f(T ) − g(S) has a
linear factor defined over F , the polynomials f and g are linearly related on the
inside over F .

Lemma 7.19 gives the following.

Proposition 7.29. Let Φ be a factor of f(T )− g(S) of total degree k > 1 which is
irreducible in F [S, T ]. Suppose that the degrees of f and g are both equal to n > 1.
Suppose also that the action of Ĝf,g on {xi} is doubly transitive. Then

n− 1 | k(k − 1).

Proof. Let O be the orbit corresponding to Φ via the correspondence of Proposi-
tion 7.20. Note that degS Φ = deg Φ = k by Corollary 7.23. Apply Lemma 7.19
with A = {xi}, B = {yj} and Γ = O. By Proposition 7.20, |O| = nk.

Corollary 7.30. Suppose the degrees of f and g are both equal to n > 2, the action
of Ĝf,g on {xi} is doubly transitive, and f(T )− g(S) is reducible over F . Then the
two irreducible factors of f(T ) − g(S) have non-equal degrees.

Proof. There are exactly two factors by Proposition 7.26. Suppose they both have
degree k, i.e., n = 2k. Then n − 1 = 2k − 1 is prime to k and k − 1. Thus n − 1
cannot divide k(k − 1), contradicting the previous proposition.

7.3. Polynomials With Doubly Transitive Monodromy Groups. Many of
the above results (Proposition 7.26 to Corollary 7.30) depend on the double transi-
tivity of monodromy groups. The classification of polynomials with doubly transi-
tive geometric monodromy groups is well-known, at least when the degree is prime
to the characteristic. We describe this classification. Throughout this section, let
f ∈ F [T ] have degree n at least 2, and let Vf be the associated C[Gf ] module with
character χf .

Lemma 7.31. Suppose the arithmetic monodromy group Ĝf acts doubly transi-
tively on {xi}. Then f is indecomposable over F .

Proof. Suppose that f = f1 ◦ f2 with f1, f2 ∈ F [T ] of degrees at least two. Then

f(T ) − f(S) = (T − S) Φ1(f2(S), f2(T )) Φ2(S, T )

where

Φi(S, T )
def=

fi(T )− fi(S)
T − S

.

Thus f(T )− f(S) has at least 3 irreducible factors, contradicting Proposition 7.26.

The following gives a partial converse.
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Lemma 7.32. Suppose f ∈ F [T ] is indecomposable over F with n = deg f com-
posite and prime to the characteristic of F . Then the arithmetic and geometric
mondromy groups of f act doubly transitively on {xi}.
Proof. A theorem of Fried and MacRae implies that, since n is prime to the char-
acteristic of F , f is indecomposable over F . Thus Gf acts primitively on {xi}. By
Corollary 5.3, there is an element of Gf which acts as an n-cycle on {xi}. Schur
proved that a finite group G acting on a set with N elements acts doubly transi-
tively if (i) the action is primitive, (iii) G contains an element acting as an N -cycle,
and (iii) N is composite.

The above lemmas allow us to concentrate on the case n a prime. In the
case n = 2 the action is trivially doubly transitive, thus we can restrict deg f = n
to odd primes (different from the characteristic of F ). Before finishing the classifi-
cation, we describe important families of polynomials whose geometric monodromy
groups do not act doubly transitively on {xi}.

Consider the cyclic polynomials f(T ) = Tn. Here Gf is a cyclic group of order n
with generator acting on the roots {xi} as an n-cycle. Furthermore, < χf , χf >= n
and f(T ) − g(S) factors into n linear factors. So when n > 2, the action of Gf on
{xi} is not doubly transitive.

The other main family of examples are the Chebyshev polynomials:

Definition 7.33. The Chebyshev polynomial τn of degree n is defined to be the
polynomial in F [T ] satisfying

τn

(
T +

1
T

)
= Tn +

1
Tn

.

The following well-known result is easily verified (the recursion can be used to
prove existence).

Lemma 7.34. For every n ≥ 1 the nth Chebyshev polynomial τn exists and is
unique (for any given characteristic). It is monic,

τ1(T ) = T,

τ2(T ) = T 2 − 2, and
τn+2(T ) = T · τn+1(T )− τn(T ) for all n ≥ 1.

Remark 7.35. When F = Q we get τn ∈ Z[T ]. Such Chebyshev polynomials arise
from the trigonometric identity 2 cos(nT ) = τn(2 cos(T )).

The following is well-known, and the second part is easily verified.

Lemma 7.36. Let n be an odd prime which is prime to the characteristic of F .
Then the nth Chebyshev polynomial τn ∈ F [T ] has a dihederal geometric monodromy
group of order 2n, and this group acts on {xi} via the standard dihederal action.

In particular, τn(T )− τn(S) has <χτn , χτn> = (n+1)/2 irreducible factors. All
are quadratic, except for the linear factor T − S. So the action of the geometric
monodromy group on {xi} is doubly transitive only for n = 3.

The following result of Burnside is an important piece in the classification.

Lemma 7.37. Suppose G acts effectively and transitively, but not doubly transi-
tivly, on a set S of prime order l. Then G is isomorphic to a subgroup of the affine
group Fl � F×

l .
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The last piece is provided by the following.

Lemma 7.38. Let f ∈ F [T ] be a polynomial whose degree is a prime distinct from
the characteristic of F . If the geometric monodromy group Gf is solvable, then f

is linearly related, over F , to either a cyclic polynomial or a Chebyshev polynomial.

Proof. This was first proved for the case f : P1 → P1 a tame cover ([Fri70]). For
the general case see [Mül97]. Here we give the barest sketch of the proof.

If Gf is solvable, then by analyzing and comparing the possible ramification
associated to Ωf/F (xi) and Ωf/F (z), and by using the Riemann-Hurwitz formula,
conclude that the cover f : P1 → P1 is totally ramified above one or two points. If
it is totally ramified above two points, then Gf is cyclic, and a simple affine change
of coordinates shows f is linearly related to the cyclic polynomial Tn. If the cover
is totally ramified above only one point, Gf is dihedral of order 2n, and f can be
shown to be linearly related to a Chebyshev polynomial.

Putting all this together gives the following classification.

Proposition 7.39. Suppose f ∈ F [T ] has degree prime to the characteristic of F .
Then the geometric monodromy group acts doubly transitively on the roots {xi} if
and only if one of the following hold.
(7.14) f is indecomposable of composite degree.
(7.15) f has degree 2.
(7.16) f has degree 3 and is not linearly related to the cyclic polynomial T 3.
(7.17) f has prime degree n > 3 and is not linearly related over F to either the

cyclic polynomial or the Chebyshev polynomial of degree n.

Remark 7.40. Suppose that f ∈ F [T ] has degree prime to the characteristic of F .
It is easy to show that if f is linearly related over F to a cyclic polynomial, then f
is linearly related over F to a cyclic polynomial.

For Chebychev polynomials, the situation is more complicated. For any a ∈ F ,
and positive integer n define the Dickson Polynomial Dn(a, T ) to be the cyclic
polynomial if a = 0, or Dn(a, T ) = an/2τn(a−1/2T ) if a �= 0. One can show that
Dn(a, T ) is in F [T ] for all a ∈ F . Observe that any non-cyclic Dickson polynomial
is linearly related over a quadratic extension of F to a Chebyshev polynomial.

From [Turn95, Lemma 1.9], it follows that if f is linearly equivalent over F to a
Chebyshev polynomial, then it is linearly equivalent over F to a Dickson polynomial.

7.4. A Special Class of Davenport Pairs. Recall that one way to construct
a DP (f, g) is to set f = f ′ ◦ h1 and g = g′ ◦ h2 where (f ′, g′) is a SDP and
h1, h2 ∈ Fq [T ] are exceptional. Such DP’s have the property that 1 ∈ Df,g .

How does one construct DP’s (f, g) with 1 �∈ Df,g? One strategy is to consider
f, g ∈ Fq[T ] with g = f ◦ l for some linear polynomial l ∈ Fq[T ] not in Fq [T ]. We
show that the only examples of this type, when f is indecomposable of degree prime
to the characteristic of Fq, are essentially of the form (Tn, aTn) where a ∈ Fq is
not an nth power in Fq (Corollary 7.43); in this case f(T ) = Tn and l(T ) = a1/nT .

Lemma 7.41. Let f ∈ F [T ] be linearly related over F to a Chebyshev polynomial
of odd degree prime to the characteristic of F . Suppose that f(αT + β) ∈ F [T ] for
some α, β ∈ F , α �= 0. Then α, β ∈ F .

Proof. This follows from [Turn95, Lemma 1.9]. (Our τn(T ) is equal to Turn-
wald’s Dn(1, T )).
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Proposition 7.42. Let f, g ∈ F [T ] be indecomposable polynomials of degree n
prime to the characteristic of F . Suppose F is a perfect field. If f and g are
linearly related on the inside over F then either (i) f and g are linearly related
on the inside over F , or (ii) f and g are both linearly related over F to the cyclic
polynomial of degree n. In either case, f and g are linearly related over F .

Proof. Observe that n < 3 is trivial. If Gf,g acts doubly transitively on {xi},
use Lemma 7.28. If Gf,g does not act doubly transitively, use Proposition 7.39
to reduce to the Chebyshev or cyclic case. In the case where f and g are linearly
related over F to the Chebyshev polynomial and n is an odd prime, use the previous
lemma. Finally, in the cyclic case, Remark 7.40 says that f and g are linearly related
to Tn over the base field F .

Corollary 7.43. Suppose that f ∈ F [T ] is indecomposable of degree n prime to the
characteristic of F where F is a perfect field. If g ∈ F [T ] is linearly related to f on
the inside over F , but not over F , then there are linear l1, l2, l3 ∈ F [T ] such that
l1 ◦ f ◦ l2 = Tn and l1 ◦ g ◦ l3 = aTn with a ∈ F not an nth power in F .

8. Main Results Concerning Indecomposability

The following results concern the case where one of the polynomials (f , say) of
the pair (f, g) is indecomposable with degree prime to the characteristic. There are
essentially two cases, depending on whether or not f is linearly related to a cyclic
polynomial. Recall f is linearly related to a cyclic polynomial over Fq if and only
if it is linearly related to a cyclic polynomial over Fq.

Theorem 8.1. Let f ∈ Fq [T ] be indecomposable over Fq, non-exceptional, and of
degree prime to the charactersitic of Fq. Let g ∈ Fq[T ] be any polynomial where
(f, g) forms a Davenport Pair, and let g = g1 ◦ g2 be the induced decomposition
over Fq associated to (f, g).

If f is not linearly related to a cyclic polynomial then (f, g1) is a SDP. In fact,
it is a SDP with multiplicity: the associated characters χf , χg1 are equal.

If f is linearly related to a cyclic polynomial, then g = f ◦ h for some h ∈ E[T ]
where E is a finite extension of Fq. Furthermore, g = l◦f ◦h′ for some l, h′ ∈ Fq [T ]
with l linear, and f and l ◦ f are linearly related on the inside over Fq.

Remark 8.2. Throughout this paper we have adopted the convention that polyno-
mials have non-zero derivatives. However, the above theorem (and the following
theorem) remain valid for g with zero derivative (with a suitable definition of in-
duced decomposition).

Proof. Let g = h1 ◦ h2 be the induced decomposition over Fq associated with the
pair (f, g). (It turns out, at least in the non-cyclic cases, that the two induced
decompositions, g = g1 ◦ g2 and g = h1 ◦ h2, are equivalent).

Since (f, g) is a DP and f is non-exceptional, f(T )−g(S) is reducible in Fq[S, T ]
(Corollary 4.12). So f(T ) − h1(S) is also reducible in Fq[S, T ] (Lemma 6.2). Since
f is indecomposable over Fq , f is indecomposable over Fq (Theorem 3.5 of [FM69]).
Thus the induced decompositions of both f and h1, associated to the pair (f, h1)
over Fq, are trivial. Lemma 6.1, especially property (6.2), implies FqΩf = FqΩh1

and Gf = Gh1 = Gf,h1 . Finally, deg f = deg h1 (Corollary 6.3).
Now we show, under the assumption that f(T ) − g(S) is reducible over Fq ,

that we can take hi to be gi for i = 1, 2. Note: the above argument that shows
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deg f = deg h1 can be modified to show that deg f = deg g1 under this reducibility
assumption. Now, by Lemma 6.1,

Fq(y1) ∩ Ωf = Fq(g2(y1)) and Fq(y1) ∩ (FqΩf ) = Fq(h2(y1)).

Since Fq(Fq(y1) ∩ Ωf ) ⊆ Fq(y1) ∩ (FqΩf ),

Fq(g2(y1)) ⊆ Fq(h2(y1)).

In particular, g2 = h′ ◦ h2 for some polynomial h′ ∈ Fq. Observe that deg h′ = 1
since deg h1 = deg g1, so, after adjusting h1 and h2 by a linear map, hi = gi, for
i = 1, 2.

We divide the remainder of the proof into three cases, using Proposition 7.39.

Case 1: Gf acts doubly transitively on the roots {xi} and deg f > 2. By Propo-
sition 7.26 and Corollary 7.30, f(T ) − h1(S) has exactly two irreducible factors
over Fq , and these factors have non-equal degrees. By Lemma 6.2, the factoriza-
tion of f(T ) − g(S) is recovered by substituting h2(S) for S in the factorization
of f(T ) − h1(S). So the two irreducible factors of f(T ) − g(S) have non-equal
T -degrees, and must then be fixed under the action of Gal(Fq/Fq). Thus the fac-
torization of f(T )−g(S) is defined over Fq. As discussed above, this means we can
take h1 = g1. The result follows from Proposition 7.26 and Corollary 7.27.

Case 2: f is linearly related over Fq to a Chebyshev polynomial and n = deg f is
an odd prime. Let G = Gf = Gh1 . By Lemma 7.36, G is isomorphic to a dihedral
group of order 2n. Note: G acts transitively on both {xi} and on the roots {uj}
of h1(T ) − z. Clearly, any two transitive actions of such a dihederal group on sets
of order n are equivalent as permutation representations. Thus G(x1) is G(uj) for
some j. Use the description of factorization of Remark 4.9 applied toG(uj) = G(x1)
acting on {xi}, to conclude that the factorization of f(T ) − h1(S) has exactly one
linear factor Φ and (n− 1)/2 irreducible quadratic factors in Fq[S, T ].

The factorization of f(T )−g(S) can be recovered by substituting h2(S) for S in
the factorization of f(T ) − h1(S) (Lemma 6.2). Since Φ(T, h2(S)) is the unique
irreducible factor of f(T ) − g(S) of T -degree one, it is fixed under the action
of Gal(Fq/Fq). So f(T ) − g(S) is reducible in Fq [S, T ]. As discussed above, we
can conclude that h1 = g1. Also, Φ, the only linear factor of f(T )− g1(S), must be
defined over Fq. The existence of Φ implies that f and g1 are linearly related on
the inside over Fq . Thus (f, g1) forms a trivial SDP.

Case 3: f is linearly related over Fq to a cyclic polynomial. (This automatically
includes the case deg f = 2). Let G = Gf = Gh1 . So G is isomorphic to a cyclic
group of order n acting transitively on both {xi} and on roots {uj} of h1(T ) − z.
Clearly, any two transitive actions of G on sets of order n are equivalent as permuta-
tion representations. Thus G(x1) is G(uj) for some j. Use Remark 4.9 to conclude
that f(T ) − h1(S) factors over Fq as the product of n linear factors. This implies
that h1 = f ◦ l0 for some l0 ∈ Fq[T ] of degree 1. So g = f ◦ h where h = l0 ◦ h2.

Using [FGS93, Lemma 4.1] and the fact that deg f is prime to p, we get a linear
polynomial l′ ∈ Fq [T ] such that f ′ = f ◦ l′ and h′ = (l′)−1 ◦ h are in Fq[T ], giving
a decomposition g = f ′ ◦ h′ over Fq. By Proposition 7.42, f ′ = l ◦ f ◦ l′′ for some
linear l, l′′ ∈ Fq[T ]. By replacing h′ with l′′ ◦ h′, we obtain the decomposition
g = l ◦ f ◦ h′.
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Remark 8.3. We can get a variant of the above theorem by replacing the hypotheses
(f, g) is a DP and f is not exceptional with the alternate hypothesis f(T ) − g(S)
reducible over Fq (keeping all the other hypotheses as they are).

Theorem 8.4. Let f, g ∈ Fq [T ] be two polynomials such that Vg(Fqt ) ⊆ Vf (Fqt )
for all t. Suppose that f is indecomposable over Fq and has degree prime to the
characteristic of Fq. Then there are polynomials g1, g2 ∈ Fq [T ] such that g = g1 ◦g2
and (f, g1) is a SDP with multiplicity.

Proof. Consider Remark 8.3 together with Proposition 4.16. The case where f is
not linearly related to a cyclic polynomial follows immediately.

In the cyclic case, consider the decomposition g = l ◦ f ◦ h′ of Theorem 8.1, and
let f ′ = l ◦ f . We know that f and f ′ are linearly related on the inside over Fq; we
claim that they are in fact linearly related on the inside over Fq, and so we can take
g1 = f . Suppose otherwise and use Corollary 7.43 to reduce to the case f = Tn

and f ′ = aTn where a ∈ Fq is not an nth power. Let t be such that qt > deg h′ but
that a is not an nth power in Fqt . Then Vf (Fqt ) contains only nth powers, but if
c ∈ Fqt not a root of h′ then g(c) is not an nth power, a contradiction.

Remark 8.5. In the above theorems, there are many cases where we can conclude
that (f, g1) is actually a trivial SDP. In other words, we can choose the decompo-
sition g = g1 ◦ g2 in such a way that g1 = f itself.

For example, in case 2 of the above proof we concluded that (f, g1) is a trivial
SDP if n = deg f is an odd prime, and f is linearly related to a Chebyshev poly-
nomial. In this case Gf is dihedral. In fact, there is no hope of having (f, g1) be
a non-trivial SDP unless Gf has two non-equivalent permutation representations
on a set of n elements whose associated characters are equal (this follows from
Proposition 7.42). This excludes most Gf .

The classification of finite simple groups, in the form of the classification of
doubly transitive representations ([CKS76]), can be used to classify groups G with
two non-equivalent faithful permutation representations acting on a set with n
elements such that (i) the characters of the two actions are equal, (ii) the actions
are doubly transitive, (iii) there is an element of G which acts as an n-cycle under
the two actions. The conclusion is that

G = PSL2(F11) and n = 11,

or

PSLk(Fs) ⊆ G ⊆ PΓLk(Fs) and n = (sk − 1)/(s− 1) for some k ≥ 3.

(This result was conjectured in [Fri73]; see Theorem 2.7 and Section 9 of [Fri99] for
more details, including historical information.) The field Fs appearing in the above
list is called the characteristic field of the Chevalley group G.

This result allows us to strengthen the above theorems: if G = Gf and n are
not of the above form, then the conclusion (f, g1) is a SDP, can be replaced by the
stronger conclusion g = f ◦ h for some h ∈ Fq [T ].

However, not all the above groups are expected to occur as geometric mon-
odromy groups of polynomials (for a given Fq). In fact, Guralnick has conjectured
the following: the finite simple groups appearing as composition factors of geomet-
ric monodromy groups Gf as f varies over all polynomials, or even all rational
functions, are, with finitely many exceptions (depending on the characteristic), the
cyclic groups, the alternating groups, and the Chevalley groups with characteristic
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field containing Fp. Thus, we can expect among f ∈ Fq [T ] with Fq of fixed charac-
teristic p, that the fields Fs appearing as Gf as in the above classification should,
with a finite number of exceptions depending on p, also be of characteristic p.

By way of contrast, in the case where Fq and Fs have the same characteristic,
examples abound. Theorem 5.2 of [Fri99] (dependent on [Abh97]) states that, for
any finite field Fq, any s a power of the characteristic of Fq, and any k ≥ 3, there
is a non-trivial SDP (f, g) with χf = χg whose geometric monodromy group is
Gf = Gg = PSLk(Fs).
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